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Abstract

Random Sample Consensus is one of the most popular and widely used method for robust es-
timation in computer vision. This work presents VSAC (USAC of 2021) that is a RANSAC-like
robust estimator with a number of novelties and improvements. It introduces the concept of
independent inliers to apply a statistical approach for distinguishing random models. This
helps to avoid acceptance of a degenerate fundamental matrix if a number of points out of the
dominant plane is negligible. Moreover, the method detects an image pair with no common
field of view with close to zero false positive rate, and with zero false negatives on benchmark
datasets. The VSAC exploits Gaussian elimination for a fast model estimation from a minimal
number of points. A further speed-up is gained by modifying criteria for the local optimization
to minimize excessive number of runs. An accurate final model parameter is found by efficiently
implemented iterative least-squares. In VSAC, a substantial speed-up is achieved by adaptive
sequential hypothesis verification.
Experiments on real-world publicly available datasets show that VSAC is significantly faster
than all its predecessors and yet as precise as MAGSAC++, the currently most accurate state-
of-the-art estimator of two-view geometry. In the repeated runs on EVD, HPatches, Photo-
Tourism, StrechaMVS, and Kusvod2 datasets, it never failed.

Keywords: RANSAC, robust estimation, local optimization, homography, epipolar geome-
try.

Abstrakt

Random Sample Consensus je jednı́m z nejpopulárnějšı́ch a nejvı́ce použı́vaných metod na
robustnı́ odhad v počı́tačovém viděnı́. Tato práce představuje VSAC (USAC 2021), který je
zlepšený robustnı́ odhadce podobný k RANSACu. Tato metoda přinášı́ koncept nezávislých in-
lierů pro použitı́ statistického přı́stupu na rozlišenı́ náhodných modelů. Tento přı́stup se pomáhá
vyhnout degenerované fundamentálnı́ matice, pokud počet bodů mimo rovinu je malý. Navı́c,
metoda detekuje dvojici obrázků, které nemajı́ společné zorné pole, se skoro nulovou falešně
pozitivnou mı́rou, a nulovým počtem falešných negativit na srovnávacı́ch datových sadech.
VSAC použı́vá Gaussovou eliminačnı́ metodu na rychlý odhad modelů z minimálnı́ho vzorku.
Dalšı́ zrychlenı́ je zı́skáno pomocı́ změny podmı́nek na pouštěnı́ lokálnı́ optimalizace, aby se
zmenšil počet jejı́ nadměrných běhů. Přesné parametry modelu jsou odhadované účinně imple-
mentovanou iterativnı́ metodou na nejmenšı́ čtverce. Ve VSACu podstatné zrychlenı́ je dosah-
nuto s použitı́m adaptivnı́ho sekvenčnı́ho testu hypotéz.
Experimenty na veřejně dostupných datových sadech ukazujı́, že VSAC je podstatně rychlejšı́
než všechny jeho předchůdce a stejně přesný jako MAGSAC++, nynı́ nejpreciznějšı́ odhadce
geometrických struktur ze dvou pohledů. Na opakovaných bězı́ch na EVD, HPatches, Photo-
Tourism, StrechaMVS a Kusvod2 datových sadech, VSAC vždycky uspěl.

Klı́čová slova: RANSAC, robustnı́ odhad, lokalnı́ optimalizace, homografie, epipolarnı́ ge-
ometrie.
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1 Introduction

Robust estimation is undoubtedly an essential area for solving many tasks, including computer
vision problems. The real world data are usually perturbed by inaccurate measurements (i.e.,
outliers) regardless of whether it is a human mistake or not. A desired robust estimator must
avoid outliers to provide an accurate result, e.g., a median of data containing at most 50% of
outliers is a reasonable estimate. In computer vision and image processing, a dimensionality
and complexity of parametric estimation require more efficient methods.

The RANdom SAmple Consensus (RANSAC) algorithm presented by Fischler and Bolles [20]
is one of the most popular robust method in computer science. It deals with data highly con-
taminated by outliers (e.g., more than 50%), whereas other robust estimators like median fail.
Therefore, it has become a widely used in computer vision where having imprecise and noisy
data are widespread issues. The RANSAC is applied in wide / short baseline stereo matching
[56, 58], image mosaicing [23], motion estimation [49], 3D reconstruction, detection of ge-
ometric primitives (e.g., line, circles, homography), and structure, motion segmentation [56],
etc.

A universal procedure of RANSAC allows to run it for a large range of estimation prob-
lems. Fischler et al. describe the algorithm as follows. At first, a minimal subset of points (i.e.,
the sample) required for a model parameter estimation is drawn uniformly at random. Models
estimated from the sample go through an evaluation process where each solution has a corre-
sponding score – number of data points consistent with it (also inliers), i.e., a model’s support.
If a model is so-far-the-best, that is, having the highest score so far, then it is getting saved.
The RANSAC repeats each step in the loop until the probability of finding a better model falls
below a user-defined tolerance level. Eventually, after the maximum number of iterations is
reached, the final estimate is polished via least-squares fitting using all its support points.

As can be seen, the RANSAC can be divided into several main parts: sampling, model
estimation, evaluation, verifying whether it is so-far-the-best, termination, and least-squares
optimization. This separation is useful for further reading, as each part will be discussed in
detail. Additionally, every component plays an important role for making RANSAC an efficient
estimator.

There are certain features of RANSAC that make it more robust than other methods. First,
a model parameter is estimated from a minimal sample, where points are drawn at random.
In the presence of outliers, the least-squares method applied for large number of data points
inevitably fails, as even one outlier destructs the estimation, while models from a minimal
number of points are likely to be good. It means that for RANSAC, it is important to use
as fewer points as possible for estimation to increase chances of a good sample. Second, the
model evaluation is based on a robust 0 / 1 loss function which checks whether a point error
distance to a current hypothesis falls below the inlier-outlier threshold. Depending on the ratio
of correct points, most of the estimated parameters will have zero support (besides those points
in sample), whereas good samples that generate better models create a competitive environment
for the best model to be selected. Consequently, RANSAC seeks a model that fits the most data
points. Finally, the maximum number of hypotheses (i.e., samples, iterations) to be tested is
well statistically justified by the upper bound equation in [20] which ensures that a solution will
be found within the user-defined confidence.

In summary, RANSAC is a highly efficient robust estimator that works well even after 40
years since it was published. However, the amount of data and tasks to be processed have
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1 Introduction

increased as computer vision has become widespread. This necessity for a better RANSAC,
which can work faster and more accurately, motivates to present newer methods that will be
discussed in the next section.

1.1 Related work

The RANSAC has undergone through many changes that can create a whole family of RANSAC-
like methods. Modifications concern different parts of algorithm, the specific properties of an
estimation problem, prior information, etc. The most significant and important updates will be
addressed, starting not in chronological order but from the method’s first step, i.e., sampling.

A new sampling procedure based on a priori given point confidence was proposed in PROSAC
by Chum et al. It exploits ranking of points to perform progressive sampling starting from the
most promising ones, and it leads to finding a good model parameter much earlier. In NAP-
SAC [46] of Myatt et al. points in sample are drawn considering their proximity. In other
words, the first point is selected uniformly at random as in RANSAC, while the rest of the
subset points must be close to the first one. Such procedure has an advantage for searching a
local structure, especially in high dimensional data, because close points are likely belong to
the same substructure. Barath et al. in Progressive NAPSAC [3] combines both approaches
to create a sampler that starts from local sampling and gradually converges to global sampling
using ranking of points.

After sampling, several publications suggest verifying a minimal point subset to satisfy cer-
tain properties of the estimation problem. For instance, Marquez-Neila et al. in [47] proposes
to check samples in homography estimation for the orientation constraint that 4 points on a
plane must hold. Similarly, Chum et al. in [15] proposes a verification of epipolar geometry
using its minimal sample for the orientation (chirality) constraint. These tests can significantly
speed up RANSAC by reducing a number of model estimations and evaluations.

Many changes concern the model evaluation part. It was observed that evaluation is the
most time-consuming comparing to sampling and estimation, because it depends on a number
of data points. Therefore, different tests for pre-emptive model verification were proposed to
reject bad solutions faster. Chum et al. in [12] proposed Td,d test which at first checks whether d
out d randomly chosen points are consistent with the model, if it is true then the corresponding
score is computed, otherwise the solution is rejected. However, this test leads to many false
negatives (rejection of good models), hence later, a more accurate pre-emptive verification was
introduced by Matas and Chum in RANSAC with sequential probability ratio test (SPRT) [43].
It starts evaluation on randomly shuffled points, during this process a model having low support
is rejected using Wald’s decision-making theorems, and the evaluation terminates. Another
probabilistic approach for pre-emptive verification was presented, for instance, in RANSAC
with bail-out [11] test of David Capel.

There are several proposals regarding the calculation of a model score, where in RANSAC
it is a number of points that have an error distance w.r.t. model less than a user-defined inlier-
outlier threshold. In MLESAC [57], Torr et al. assume that points’ errors follow a mixture of
Gaussian distribution for inliers and uniform for outliers. Consequently, using the maximum
likelihood procedure, the score is computed with a log-likelihood function. The threshold can
be a bottleneck for the whole RANSAC algorithm, since its wrong value leads to worse results.
To avoid problems with a user-defined noise level, a-contrario RANSAC [19] by Epsuny et al.
and MINPRAN [54] of Charles Stewart select internally the threshold value in a way inliers
are least likely to occur at random. Barath et al. in MAGSAC [6] propose to marginalize the
model’s quality function of error distances over a range of noise levels.

The model only with the best score so far is accepted in RANSAC, however, it may result

2



1.2 Motivation

in saving degenerate solutions. Especially, it appears in fundamental matrix estimation, where
points on a plane produce a degenerate epipolar geometry with a high support. Undoubtedly,
this is a quite serious problem of the standard RANSAC as it yields to the failure of estimation.
This issue was addressed in PLUNDER [59], and later in DEGENSAC [16] by Chum et al.
who propose to check a fundamental matrix on degeneracy, and in the worst case recover it if
possible. A universal approach for RANSAC in dealing with degenerate configurations was
presented in QDEGSAC [21] by Frahm et al..

Chum et al. in Locally Optimized (LO-)RANSAC [14] observed that models estimated from
minimal samples in the presence could be inaccurate. Therefore, in [14] is proposed to refine
a so-far-the-best model using a non-minimal subset of points consistent with it. This step
leads the model parameter to be more accurate with a significantly increased number of inliers.
The similar procedure was later presented in Graph-Cut (GC-)RANSAC [4] of Barath et al.,
which additionally incorporates a spatial coherence of points, formulating the task as an energy
minimization problem. In MAGSAC++[5], Barath et al. proposes an iterative re-weighted
least squares optimization where weights are computed from the inlier probability of points,
marginalized over a range of noise levels, similarly as in [6].

1.2 Motivation

The idea of a universal RANSAC integrating different state-of-the-art methods, and being able
to efficiently solve one of the most popular computer vision problems as homography or epipo-
lar geometry estimation appeared in USAC [51] by Raguram et al.. The estimator in [51] con-
tains orientation tests, PROSAC, SPRT, DEGENSAC, and LO-RANSAC. Although, since then,
new methods like MAGSAC++ and GC-RANSAC leading to better results were introduced.
Moreover, a newer framework USACv20 [32] is providing more accurate solutions and work-
ing yet faster. Consequently, the necessity of RANSAC-like framework solving widespread
estimation problems is actual.

Another problem of RANSAC is the ability to state whether the found solution is good, or
it is just a random model with a non-zero number of inliers. In the real-world application, the
maximum number of iterations for RANSAC is set by user, thus by finishing earlier than the
upper bound equation predicts, it does not guarantee a correct estimate. Moreover, having a
pair of images sharing no common field of view, all models found by RANSAC are bad, and
yet they have points consistent with them.

To recognize a failure and random model, there is a need to distinguish the true inliers and
ones that are by chance consistent with a model structure. Additionally, a degenerate configu-
ration of points increases a support of bad hypotheses. For instance, assume a cluster of points
in close proximity, and a line passing through them. The line’s support using an inlier-outlier
threshold includes all the cluster’s points. However, two points that generate this line are al-
ways inliers, and the others lying closely to them are automatically included in the support of
the line. The RANSAC can fail if the number of cluster’s points exceeds the support of a true
line.

1.3 Thesis contributions

This thesis presents a RANSAC-type estimator, VSAC, that exploits a number of novelties. It
is significantly faster than all its predecessors, and yet as precise as MAGSAC++, currently
one of the most accurate method both in the experiments and according to a recent survey [41].
The accuracy reaches, or is very near, the geometric error of the ground truth, estimated by
cross-validation.
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1 Introduction

For homography (H) and epipolar geometry (F) estimation, VSAC runs on average several
milliseconds (on a CPU) on all datasets, in orders of magnitude faster than MAGSAC++. In
the repeated runs on datasets EVD [44], HPatches [2], PhotoTourism [53], StrechaMVS [55],
and Kusvod2 [36], it never failed.

Moreover, VSAC is able to reject non-matching image pairs, with almost zero false posi-
tive rate on hundreds of random image pairs and a zero false negative rate on pairs from the
above-mentioned datasets. The ability is underpinned by a novel concept of independent ran-
dom inliers in the contrario context. We show that if dependent random inliers, e.g., spatially
co-located points, are not counted, the support of random models follows very closely a Poisson
distribution with a single parameter λ that is easy to estimate reliably1 for the given pair. The
easily calculated CDF of Poisson raised to the power of the number of evaluated models pro-
vides the probability that a certain model quality was reached by chance. VSAC thus provides
two confidence measures together with its result. The first is the classical one – the probability
that RANSAC returned the model with the highest support. The second is the confidence that
the returned solution was not obtained by chance.

The concept of independent random inliers plays a critical role in VSAC’s improved accu-
racy and robustness. Experiments show that most failures of USAC-like methods for F esti-
mation occur in the presence of a dominant plane, despite the DEGENSAC algorithm. In such
cases, the number of out-of-plane inliers is often small, and due to structures within the outliers
sets, incorrect models with high support exist. Removing the contribution of the dependent
structures addresses the problem. Further improvements of dominant plane handling include a
heuristic guess of the calibration matrix which allows dealing with fully planar scenes and de-
tects pure rotation. If the guess is wrong, the support reveals it and nothing but a microsecond
is lost.

The speed of VSAC is achieved with several technical improvements. Most significantly,
we attack the problem of expensive local optimization. In the LO-RANSAC paper [14], the
authors prove that the local optimization is run at most log(K) times, where K is the number
of iterations. Nevertheless, despite log(K) � K, the complex local optimization may end
up being the efficiency bottleneck. We show that a fast local optimization combined with a
single complex final optimization leads to a faster, yet equally precise algorithm. Moreover, by
detecting the intersection over union of so-far-the-best and the current set of inliers and by not
optimizing similar models, an algorithm is obtained that runs the local optimization on average
about once and almost always fewer than two times.

Further speed up is gained by adaptive SPRT. The expected number of random inliers is
estimated to tune SPRT [43] to the outlier density of the processed pair. We also measure, on
the fly, the actual time of model estimation and model verification on the given hardware at the
given moment, which is needed for calculating the quasi-optimal thresholds of the SPRT.

We also show that minimal model estimation via Gaussian elimination (GE) is highly ef-
ficient and surprisingly effective compared to SVD. In the context of RANSAC, where most
models are computed from outlier-polluted data and therefore thrown away, the speed of GE
more than compensates for its numerical issues, since imprecision or instability is addressed by
local optimization or further sampling.

To broaden its application potential, VSAC provides novel outputs. Employing the highly
efficient Lindstrom method for triangulation [38], it obtains the point pair exactly fitting the
returned F that minimizes the geometric error. Similarly, correspondences are corrected for H
by introducing a half homography, which is used to obtain error-free points. VSAC can be thus

1For geometric problems, the Poisson distribution is a tight approximation of the binomial. Moreover, only the
mean λ of independent random inlier counts needs to be estimated, instead of T (number of trails) and δ (success
probability) for the binomial.
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1.3 Thesis contributions

employed for noise filtering.
Finally, the framework presents a number of minor novel features. The final model optimiza-

tion is done by efficient iterative least-squares method. New solvers for a non-minimal essential
matrix and minimal linear perspective-6-point algorithm are introduced. VSAC can filter in-
correct correspondences by chance consistent with the found epipolar geometry. Additionally,
the whole framework can run in parallel.
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2 Non-randomness

One issue of RANSAC-like robust estimators is the inability to recognize failures. The esti-
mator always returns a model maximizing some quality function, e.g., the inlier count. Points
consistent with a model parameter that stem from outlier structures – sets of neighboring data
points that do not originate from the sought model manifold, significantly affect the quality
function when considered as inliers. In such cases, the returned model might have a reason-
ably large number of inliers while being inconsistent with the underlying scene geometry. See
figure 2.1 for examples.

This chapter aims to address this problem. At first, the concept of independent inlier will be
presented. Further, this work will show its influence on the detection of failure by building a
statistical model of one estimated parameter. Finally, the proposed approach will be integrated
into pre-emptive verification making it more accurate than it was described in [43].

2.1 Independent inliers

In this section, we propose a new approach for failure model detection. Towards that end,
we differentiate between independent and dependent inliers. This split is conceptual, helping
exposition – in the a contrario calculation of the probability, we pick one point in a group of
structured points and count it as an inlier arising by chance, it is an independent random inlier.
The other inliers in the structure are ignored, since their inlier status is not a random event,
but rather a consequence of their spatial dependence and the fact that the independent inlier is
consistent. A non-random model must have a sufficient number of independent inliers.

We define data point p a dependent inlier if its point-to-model residual is smaller than the
inlier-outlier threshold and one of the following conditions hold.

1. Point p is in the minimal sample used for estimating the model parameters. In such cases,
the point will have zero residual by definition.

2. Point p is close to an independent inlier q, ||p − q|| → 0. In such cases, points p and
q form a spatial structure that affects the model quality significantly. Thus, only point q
is considered independent random. Other points from the structure, e.g., p, are dependent
inliers.

These conditions are valid for general data points and model to be estimated. In case of es-
timating epipolar geometry from point correspondences, we define the following additional
conditions as well.

3. A correspondence (p,p′) where p or p′ is close to the epipole in the corresponding image
is considered dependent since (p,p′) always satisfies epipolar constraint p′>Fp = 0. This
stems from the fact that Fp w Fe = 0 if ||p − e|| → 0, where e is the epipole in the first
image. The same holds in the second one.

4. Correspondence (p,p′) is a dependent inlier if it does not pass the chirality check [15]. In
this case the point is not correct, thus it is just by a chance consistent with epipolar geometry.

5. Let (l, l′) be the corresponding epipolar lines of an independent inlier correspondence. All
correspondences that are closer to lines (l, l′) than the inlier-outlier threshold are considered
dependent (see appendix 11.1);
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2.2 Failure detection

Ground-truth line (15 inliers)
Best RANSAC line (23 inliers)

Ground-truth line (53 inliers)
Best RANSAC line (66 inliers)

Figure 2.1 Examples of random models found by RANSAC with a large number of dependent inliers.

Data points that have a point-to-model residual smaller than the inlier-outlier threshold and do
not satisfy any of the previous conditions are considered independent inliers.

2.2 Failure detection

To decide if a model estimated by RANSAC is random and inconsistent with the underly-
ing scene geometry and, thus, should be considered failure, we use the univariate theory [52].
Suppose that we are given N models estimated inside RANSAC during its run and the corre-
sponding numbers of random independent inliers I1, I2, . . . , IN ∈ N. The number of I points
is consistent with a random model follows the binomial distribution. The sequence of inliers
is an i.i.d. random variable with cumulative binomial distribution CB(T, δ), where T is the
number of points and δ is the probability that a point is an independent inlier to a bad (random)
model. The distribution of Imax = max{I1, I2, . . . , IN} overN models isCB(T, δ)N . In order
to recognize a good (non-random model) with confidence p→ 1, the following condition must
hold.

CB(Imax;T, δ)N ≥ 1− p. (2.1)

In our experiments, we found that probability δ is fairly low, i.e., bad models usually have
just a few independent inliers. In this case, the binomial distribution can be approximated by
Poisson distribution which is faster to compute. The only parameter of the Poisson distribution
is λ = T δ that represents the mean number of independent inliers of bad solutions. Finding
independent inliers for every model generated in RANSAC is inefficient and redundant, because
a good estimate could be obtained even from a small number of hypotheses. Hence, we estimate
parameter λ from the first n � N generated models. Parameter λ is the mean number of
independent inliers consistent with a bad model. In RANSAC, all models are considered bad
that have fewer inliers than the so-far-the-best one. However, for estimation of λ this is not
the case since models with fewer inliers could be good non-random structures, thus they can
destruct the λ estimate. Table 2.1 shows that even not all-inlier samples can generate solutions
with high number of independent inliers. Therefore, the following robust approach for finding
a Poisson parameter is needed:

1. Discard from n independent inlier counts a support of so-far-the-best model and inlier num-
bers of models that have significant overlap of inlier sets (Jaccard similarity [34]) with it.

2. Select λ̃ as a median number of the remaining values.
3. Compute 95% percentile (I%95) of Poisson distribution with parameter λ̃.
4. Calculate λ̂ as the average of independent inlier numbers lower than I%95.

This procedure removes outliers (good structures with high support) using I%95 that can spoil
the estimation of λ̂. Additionally, it confronts models that have similar inlier sets as the so-
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2 Non-randomness
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Figure 2.2 Probability histograms of numbers of all (red bar) and independent (green and blue bars)
inliers of all models estimated in RANSAC with the fixed 105 number of iterations; and Poisson dis-
tribution with its parameters calculated from all (red circle) and from the independent inliers (green
triangle and blue cross) on a scene from EVD dataset (left) and an image pair without common field
of view (right). The blue histogram unlike to the green one shows independent inliers of models gen-
erated by artificially modified bad samples. Both histograms are related to homography estimation.
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Figure 2.3 Histograms of (independent) inliers for fundamental matrix estimation. The histogram on
the left is for an image pair (”Sacre Coeur”) from PHOTOTOURISM dataset, and the right plot is for
an image pair with no common structure.

far-the-best, as they represent the same structure. It is done not only for an accurate detection
of random solutions, but mainly for avoiding false negative results (detecting a good model
as a random). If number of good structures among the first n is more than half, then the test
for non-randomness is unnecessary. However, a precise Poisson parameter is also required for
another reason, which will be described later.

Finally, to decide if the model returned by RANSAC is non-random and, thus, should be
accepted, the cumulative distribution of (max{I1, . . . , IN}; λ̂)N is calculated, and the model is
considered a good one if (2.1) holds.

The proposed test has a false negative case in the extreme scenario, when multiple structures
with no inlier overlap exist, and they have a similar number of independent inliers. To avoid
this issue and improve estimation of λ̂, this work suggests to deliberately generate a bad sample
points, e.g., by swapping coordinates of correspondences on the second image – correct points
become bad, and incorrect matches remain bad. Therefore, the found number of points con-
sistent with bad models will be close to the theoretical one. In table 2.1 are reported average
numbers of independent inliers of corrupted samples and samples with no good point in it, they
are very close.

The independent inliers play a crucial role in RANSAC failure detection. As is shown in
figure 2.1, dependent inliers (e.g., close points lying in clusters) increase supports of RANSAC
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2.3 Adaptive SPRT

Number of points consistent with GT model in sample, i
0∗ 0 1 2 3 4 5 6 7

F 7.39±2 8.67±3 11.64±5 16.77±8 26.10±13 40.14±24 63.56±51 >90 >100
H 0.50±1 0.18±1 0.75±1 3.96±4 23.01±24 >300 - - -

Table 2.1 In rows are mean numbers of independent inliers averaged over 50 images pairs with their
standard deviation. The means of independent inliers are computed over 5000 samples containing
only i points consistent with GT model; for each i from 0 to 7, where 0∗ denotes artificially mod-
ified bad samples. The rows show results for F (7-point) – fundamental matrix and H (4-point) –
homography problems.

models, which makes it more likely to output degenerate solutions. By removing those depen-
dent points, the proposed test can calculate the true support of the final model and distinguish
it from a random one. Most importantly is that the dependent inliers of bad models do not fol-
low the theoretical Poisson distribution. For instance, in figure 2.4 is shown a detected invalid
homography matrix, which has high support of degenerate correspondences in an image pair
with no common field of view.

Figures 2.3-2.2 show histograms of independent and dependent inliers for an image pair with
a common field of view and a pair without common structure, for fundamental and homography
matrix estimation. Additionally, figures demonstrate Poisson distribution (PDF) calculated via
the proposed method using independent and dependent inliers. In all scenarios, Poisson PDF
estimated from all (including dependent) inliers does not fit histogram of inliers. For the image
pair without common field of view, histograms of independent inliers have a perfect fit. For
the image pair with the common structure, the estimated Poisson PDF does not fit histogram of
independent inliers well due to samples perturbed by good points (see table 2.1). However, it
fits a histogram of independent inliers of bad samples that implies that the estimation of Poisson
parameter was correct.

2.3 Adaptive SPRT

Figure 2.4 Homography estimation on an image
pair sharing no common scene matched by SIFT
detector. Green circles (95) are points consistent
with the final model, the only red one – indepen-
dent inlier. The model is predicted to be random.

The Sequential Probability Ratio Test
(SPRT) proposed by Matas et al.[43] aims
at speeding up the robust estimation pro-
cedure by addressing the problem that,
in RANSAC, a large number of models
are verified, e.g., their support is calcu-
lated, even if they are unlikely to be bet-
ter than the previous so-far-the-best. The
time spent on these models is wasted. The
SPRT is based on Wald’s theory of se-
quential decision making. It interrupts the
model verification when the probability of
that particular model being a good one
falls below threshold, which is optimally
found inside the method.

SPRT has four user-defined parameters,
i.e., the initial probability of a correspondence being consistent with a good (ε0) and a bad
model (δ0); avg. number of estimated models (m̄S); time to estimate the model parameters
(tM ). The actual parameters that lead to the fastest procedure are challenging to find manually
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2 Non-randomness

and require a user to acquire knowledge about the problem at hand. Even the architecture of
the computer impacts the minimal solver and point verification times that should be considered
when setting tM . To avoid the manual setting, we propose the Adaptive SPRT (A-SPRT)
algorithm that finds the optimal SPRT parameters in a data- and architecture-dependent manner.

The model estimation time depends not only on the computer architecture, but also on the
actual solver and error metric being used. Parameter tM is calculated for free by measuring
the model estimation and point verification run-times in the first k RANSAC iterations. The
average number of models m̄S is found as the average number of valid models per sample
in the first k iterations. Inlier probabilities ε0 and δ0 are estimated from the average number
λ̂ of inliers consistent with a bad model that is estimated from in the first n RANSAC models
as δ0 = λ̂ / T , see section 2.2. Parameter δ0 is the probability of a point being an inlier and
λ̂ is the mean of the corresponding binomial distribution B(T, δ0). From δ0, we approximate
the maximum number of inliers Iδ of a bad model as a high quantile (e.g., 0.99) of the normal
distribution with the same mean and standard deviation as B. The approximation is as follows:

Iδ = λ̂+ 3.719

√
λ̂ (1− δ0) (2.2)

The initial probability ε0 of a correspondence being inlier can be calculated using inlier number
of so-far-the-best model. However, δ0 gives an upper bound number of inliers of bad structures.
Therefore, a good model must have at least number of inliers of so-far-the-best and the random
one:

ε0 = max(Iδ, Î
∗) / T, (2.3)

where Î∗ is the inlier number of the so-far-the-best model.
If probabilities δ0 and ε0 are similar, the original SPRT is prone reject good models leading to
increased run-time or, in extreme situations, total failure. To solve this issue, we propose to
apply A-SPRT only if:

1

1− α
twv E

w(T ) < tv T, (2.4)

where twv and tv are the times for verifying a single correspondence, respectively, with and
without SPRT, and α is the probability of a false rejection [43], and Ew(T ) is the average
number of points verified.

The new A-SPRT incorporates the Poisson parameter to estimate the probability of a point
being consistent with a bad model. Correct estimation of λ̂ decreases the number of good model
rejections made by pre-emptive verification. Moreover, the right δ̂0 probability could speed-up
rejection of bad hypotheses. This is another reason for excluding models with high inlier count
in λ̂ estimation.
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3 Degeneracies in epipolar geometry

Handling degenerate solutions and degenerate configuration of points is an important task. The
standard RANSAC proposed by Fischler et al. is not safe against invalid models that may
appear as ones with high support. It is explained by a score-driven acceptance of a so-far-the-
best model, making it the only criterion to decide whether the model is good. As a result, for
some data measurements, RANSAC without degeneracy checks may inevitably fail to find the
correct model.

For instance, in line estimation, two identical points cannot generate a unique line; for a
planar homography estimation, three collinear points in a 4-point sample cause a degenerate
rank-deficient solution, which projects points to lines. In previous examples, the degenerate
cases could be detected by preprocessing sample points to check whether they are in general
position. However, for a fundamental matrix (F) estimation, degenerate configurations are
more sophisticated, the most common is when points of a minimal sample lie on a dominant
plane. Since the fundamental matrix describes a 3D structure, a planar point set does not
generate a valid solution. Additionally, the difficulty of the task is that no prior segmentation
of points is usually given, while the occurrence of planes is widespread, especially in the urban
environment.

The degenerate configuration of fundamental matrix was studied, e.g., in PLUNDER [59]
or DEGENSAC [16]. The latter work by Chum et al. shows that 5 correspondences lying on
a dominant plane in a 7-point minimal sample could originate a degenerate fundamental ma-
trix. In addition, DEGENSAC presents the whole approach to detect and recover a degenerate
fundamental matrix, by trying to efficiently find a homography using correspondences of the
minimal F sample.

Some degenerate configurations can be detected, avoided, and invalid solutions could be even
recovered, however, there are rare cases, when input data points inevitably lead to degenerate
structures. For instance, if a camera undergoes pure rotation, then all correspondences in a
two-view scene are consistent with homography, hence no epipolar geometry can be estimated.
Another critical scenario for F estimation is when a camera captures a fully planar scene.

Further, the reader will be introduced with a new DEGENSAC+ method, which efficiently
detects and recovers degenerate fundamental matrices. If calibration is given, the proposed
estimator guarantees a non-degenerate solution or report a pure-rotation scene. Moreover, it in-
corporates the non-randomness criteria described in previous chapter 2 to report if the recovery
of the degenerate fundamental matrix fails.

3.1 Non-randomness under degeneracy

The DEGENSAC of Chum et al. is an efficient estimator which is used in many RANSAC
implementation, including state-of-the-art USAC framework [51]. The method, at first, tries
to estimate homography using 3 correspondences from a 7-point sample. Second, runs plane-
and-parallax RANSAC to find 2 points out of a plane that together with estimated homography
generate a new non-degenerate fundamental matrix. However, a problem appears for the plane-
and-parallax RANSAC when a number of good points out of the plane is low, thus the method
could fail. The DEGENSAC is not able to recognize the failure since the found model has a
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3 Degeneracies in epipolar geometry

Figure 3.1 An image pair (”Box”) from KUSVOD [36] dataset shows two incorrect matches (red
circles) found by plane-and-parallax RANSAC. All non-planar inliers of the wrong hypothesis (with
the highest found support) are green bold circles. The dominant plane is a floor of the image.

Figure 3.2 Plane-and-parallax RANSAC based on calculating independent non-planar support found
two right correspondences out of the dominant plane. The fundamental matrix has the highest num-
ber of independent inliers out of the plane.

non-zero support of randomly consistent points. Consequently, the final model remains degen-
erate, which leads to the total failure of F estimation.

The non-randomness test proposed in 2 should be emplaced into plane-and-parallax RANSAC
to detect a failure output. Moreover, when a number of points out of a single plane is small,
then it becomes extremely important to distinguish among dependent and independent inliers.
The rules for independent support are the same as is described in 2.

A figure 3.1 demonstrates the failure of two-point plane-and-parallax RANSAC without re-
ducing dependent inliers. The majority of points on the left image incorrectly match one point
on the right image, hence, all are dependent. The found fundamental matrix has the highest
number of all inliers and yet being still degenerate. The same RANSAC including computa-
tion of independent inliers managed to find correct F, its non-planar independent support is
visualized in figure 3.2.

The problem can be also defined as follows. A set of point correspondences T can be divided
into two sets TH and T cH. Where TH is set of points consistent with homography H; and c stands
for the complement set, that is, T cH is a set correspondences not consistent with H. A set TF of
points consistent with fundamental matrix must satisfy:

1. TF ⊇ TH – points consistent with homography are also consistent with fundamental matrix.
2. TF ∩ T cH 6= ∅ – fundamental matrix has non-planar support.

While the standard RANSAC intends to find a fundamental matrix F̂ which maximizes |TF̂|,
the plane-and-parallax RANSAC should maximize |TF̂ ∩ T

c
Ĥ
| of estimated homography Ĥ.

However, wrong matches TO tangle the objective, as they are non-planar and could be consis-
tent with epipolar geometry, hence (TF̂ ∩ T

c
Ĥ

) ∩ TO 6= ∅. Therefore, finding a non-degenerate
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3.2 False negatives

F̂, i.e., a pair of non-planar matches, is a subtle problem. Outliers that are randomly consistent
with an epipolar geometry could outnumber good non-planar support, leading to the incorrect
solution as happened in figure 3.1.

The non-randomness criteria could be applied to verify a homography matrix. This is im-
portant since H is mainly used to recover a degenerate fundamental matrix. Partly, DEGEN-
SAC checks H to have at least 5 inliers in 7-point sample, which determines the degeneracy
of F. However, there is no guarantee that these 5 inliers are not dependent. This issue will
be addressed further in this chapter, suggesting that a homography should have a significant
independent inlier support.

3.2 False negatives

In the texbook DEGENSAC, if 5 correspondences of 7-point fundamental matrix sample are
consistent with homography then plane-and-parallax is applied, nonetheless, it does not nec-
essarily mean that F is degenerate. One of the reasons for this is that two other matches in
sample can be incorrect. However, this work has experimentally found that there are cases
when a homography related samples generate good epipolar geometry.

By a simplification, in this chapter, a subset of image correspondences consistent with H is
called planar, although its points almost never lie precisely on a plane. There are several reasons
for this, e.g., many planes in real world are not flat and contain some relief (e.g., windows on
a facade). For distant planes, the relief may not be visible, however, inaccuracies of matches
(especially corner points) and their noise caused by point-detector spawn correspondences that
do not lie exactly on plane. Moreover, thresholding a reprojection distance of a correspondence
is not the most accurate way to check its consistency with a plane. Therefore, it suggests that a
test to avoid wrong assumption on a model degeneracy is needed.

This section proposes to verify a fundamental matrix itself on a sufficient non-planar inde-
pendent inliers. It aims to eliminate a number of false negatives cases (incorrect classification of
good F as a degenerate), hence reduce a number of redundant plane-and-parallax runs. Initially,
the sufficient number of independent inliers can be set as a lower bound of a non-degenerate
solution. Later, it is estimated as an average during two-point RANSAC, the same way as is
described in chapter 2.

In figure 3.3 is shown a non-degenerate fundamental matrix originated by a sample with all
7 points related by homography, however the correspondences are located on a raised facade.
Independent support off the plane of F is sufficient, hence, the fundamental matrix does not
need to be recovered.

3.3 Calibrated DEGENSAC

This section presents a new DEGENSAC+ method based on the original DEGENSAC. It ad-
dresses the issue of finding non-degenerate fundamental matrix that has a sufficient number of
independent inliers out of plane. Mainly, the procedure decreases a number of returning degen-
erate models (i.e., failures) and number of plane-and-parallax executions. The proposed algo-
rithm also uses intrinsic matrices that are sometime available, e.g., in a vehicle’s ego-motion.
Even if calibration is not known, the method is able to approximate intrinsic matrices, which
can be also beneficial for users. The calibrated DEGENSAC+ has the following advantages
over the original method:

(a) It can recover epipolar geometry if the scene is planar.
(b) It can distinguish pure rotation.
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3 Degeneracies in epipolar geometry

Figure 3.3 Seven matches (blue circles) of a
minimal F sample are consistent with homog-
raphy that was found in DEGENSAC+. Green
points are independent non-planar support of
F, which is not degenerate.

Figure 3.4 An image pair of a book shows
epipolar lines of non-degenerate fundamen-
tal matrix and its inliers. F was found
via homography decomposition and intrin-
sic matrix approximation in DEGENSAC+.

(c) It runs significantly faster and in constant time.
(d) A failure of the method, i.e., finding a bad model, is predicted by the non-randomness test.

Algorithm 1: DEGENSAC+

Input: F̂∗ – so-far-the-best fundamental
matrix; S – minimal sample
initializing F̂∗, Ic

Ĥ
– initial guess for

independent non-planar support.
1 Ĥ← estimateHomography (F̂∗,S)
2 if Ĥ = ∅ then
3 return: F̂∗ // no homography

4 T c
Ĥ
←nonPlanarPoints(Ĥ)

5 if support (F̂∗, T c
Ĥ

) ≥ Ic
Ĥ

then
6 return: F̂∗ // not degenerate
7 if K is given then
8 assert (K−1ĤK is not conj. to rotation)
9 F̂← findF (Ĥ, K)

10 return: F̂ //cannot be degen.

11 else
12 F̂′ ← findF (Ĥ, K̂) //use approx K̂

13 if support(F̂′, T c
Ĥ

) ≥ Ic
Ĥ

then
14 return: F̂′

15 // re-estimate support Ic
Ĥ

16 F̂′′, Ic
Ĥ
← planeAndParallax (T c

Ĥ
, Ĥ)

17 if support (F̂′′, T c
Ĥ

) ≥ Ic
Ĥ

then
18 return: F̂′′

19 return: ∅ // reject F̂∗

The DEGENSAC+ is outlined in
the algorithm 1. The method’s input
is so-far-the-best fundamental matrix
F̂∗, the corresponding 7-point sample
S, and an initial guess for the sufficient
number of independent non-planar in-
liers of fundamental matrix (Ic

Ĥ
). The

latter value will be estimated further in
the method, however, in the beginning
it is an expected number that assures
non-degeneracy, e.g., 20 independent
non-planar inliers, while degenerate F
has zero excluding randomly consis-
tent ones. The algorithm starts with
an estimation of a homography ma-
trix using 3 correspondences from S
and F̂∗ (line 1). If homography is
found, it separates points not consis-
tent with H into a set T c

Ĥ
of tentative

points off a plane (see line 4). This
set is used primarily to calculate inde-
pendent non-planar support of a fun-
damental matrix, and if necessary for
the two-point sampling in plane-and-
parallax RANSAC. In the line 5 the in-
put F̂∗ is verified to be non-degenerate
by checking whether it has a sufficient
number of non-planar inliers. Next
comes a novel part, where the funda-
mental matrix can be recovered with

Ĥ and calibration.
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3.3 Calibrated DEGENSAC

Given a homography and (approximated) intrinsic matrices K1,K2 ∈ R3×3 the method
is able to recover a fundamental matrix via H decomposition described in [42] by Malis et
al. Exploiting calibration brings several advantages over the plane-and-parallax RANSAC.
First, the decomposition takes a constant time, whereas plane-and-parallax repeatedly draws
two correspondences out of plane. Second, more importantly, the new algorithm can handle
pure rotation and scene containing only dominant plane. No translation case implies that all
matches are consistent with homography, therefore, in both cases the original DEGENSAC
fails, because no point off a plane exists.

According to [42], a homography H using calibration can be decomposed into rotation R ∈
SO(3) and translation t ∈ R3 with four possible pairs (Ra,±ta), (Rb,±tb). The fundamental
matrix is then found by composing R̂ ∈ {Ra,Rb}, t̂ ∈ {±ta,±tb}, K1, and K2. Since
the fundamental matrix is given up-to-scale then two solutions (e.g., for −ta and −tb) can be
eliminated, and the best one is selected, e.g., with the maximum inlier count.

F = K−>2 [t̂]×R̂K−11 (3.1)

In many cases, the calibration is not known a priori but can be approximated. Setting the
principal points to coincide with the image centers is a widely used approach. An estimation
of the focal length is, however, a more challenging problem. Testing a range of candidate focal
lengths to find a reasonable approximation leads to a good F estimate while still being faster
than the original plane-and-parallax RANSAC. The approximation procedure does not aim to
find a precise calibration since the only goal is to produce a non-degenerate fundamental matrix,
thus the same focal length for x and y axes is assumed. Moreover, even if a non-degenerate
F is consistent with a wrong pair of intrinsic matrices, the final LSQ optimization generates a
better F where this consistency is lost.

In figure 3.4 is an image pair with a dominant plane. For this problem, the plane-and-parallax
RANSAC inevitably fails to find a pair of non-planar correspondences. While, the approxima-
tion approach returns intrinsic matrix with the best found focal length equals to 3000 (tested
with the step 100) and the principal point – (2016, 1512) pixels. The ground truth calibration
matrix has focal length for x−axis equal to 3075.3, for y−axis it is 3074.4, and the principal
point is (1995.3, 1531.8) px. An estimated relative pose after homography decomposition is
also close to the ground truth one.

Nevertheless, DEGENSAC+ does not completely rely on approximated instrinsic matrices,
as they could be imprecise. First, they are not used for pure-rotation detection. Second, a
generated fundamental matrix from approximated calibration is verified for independent non-
planar support (see line 13 in Alg. 1). If the model does not have sufficient support, then plane-
and-parallax RANSAC runs, and additionally, the sufficient number of independent inliers out
of the plane is re-estimated. In case true intrinsic matrices with correct homography are used,
they cannot produce a degenerate epipolar geometry.

All computations in DEGENSAC+ highly depend on a quality of an estimated homogra-
phy. It is important that H is not a random structure, but the one having a significant support.
Therefore, the estimation of homography includes the LSQ optimization. Additionally, two
inlier-outlier thresholds to check point consistency with H (plane) are introduced. The first
threshold is used to measure the quality of H itself, its value is, e.g., 2.5 pixels. The MLESAC
evaluation kernel can be applied since the goal is to find as good homography as possible. The
second threshold reflects the confidence of a correspondence belonging to plane, and its value
should be higher, e.g., 10 px. The reason is that if the homography is still not accurate enough,
then many planar points can have reprojection distances higher than the first threshold. How-
ever, for the plane-and-parallax RANSAC, it is better to filter out all possible planar points to
avoid their selection in two-point sampling. Note, the idea of the maximum threshold is also
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3 Degeneracies in epipolar geometry

mentioned in MAGSAC [6]. Although, its purpose is for a model evaluation to marginalize
error distances over the noise level.

3.3.1 Pure rotation detection

This section shows how to detect a relative pose that does not have camera translation. Let
(x,x′) be a point correspondence, K1,K2 are the intrinsic matrices, R1,R2 are the camera
rotations, X is the unknown 3D object point, and a scene undergoes pure rotation. In this case,
the following projection equations hold:

x ∼ K1R1X, x′ ∼ K2R2X (3.2)

x′ ∼ K2R2R
>
1 K−11 x (3.3)

where operator ∼ means equality up-to-scale. The equation above shows relation of corre-
spondence x to x′ after eliminating the object point X . Homography H = K2R2R

>
1 K
−1
1

transforms image points as:
x′ ∼ Hx (3.4)

The DEGENSAC+ aims to find image homography using so-far-the-best F and triplet of
matches from a 7-point sample. In the normalized by K1 and K2 point coordinates, a ho-
mography H̃ is conjugated to rotation:

H̃ = K−12 HK1 = R2R
>
1 = R (3.5)

To obtain H̃, the homography H is multiplied by the K1 and K−12 , and the scale of H̃ is
removed (e.g., via SVD). The conjugated to rotation homography must be orthonormal matrix,
i.e., H̃>H̃ = I. Therefore, it is enough to check whether matrix product is close to identity
matrix, that is ||H̃>H̃ − I||F < ε, where ||.||F stands for Frobenius norm and ε is a tolerance
threshold. When a homography conjugated to a rotation is detected, RANSAC can terminate
and there is no epipolar geometry to be outputted.

Figure 3.5 An image pair of a scene without camera translation demonstrates matches (colorful cir-
cles) related by homography conjugated to rotation. This case was detected by the proposed in this
section test.
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This chapter discusses a model parameter estimation from a minimal and non-minimal number
of points. In RANSAC, the estimation is one of the most time-consuming parts. Undoubtedly,
it is yet one of the most important parts since finding a model affects the overall accuracy of
RANSAC. This chapter describes a desired solver that aims to speed up RANSAC, simultane-
ously without the final accuracy trade-off. The solver itself is divided into two parts: minimal
– deals with the minimum number of points required for a specific task, and non-minimal – can
estimate a model from higher number of points.

Additionally, a new approach of incorporating the minimal and non-minimal solvers works as
follows. The minimal solver returns valid solutions as fast as possible, whereas accurate models
are obtained by the non-minimal solver in local optimization, or in the final optimization, which
is done only once. The RANSAC in its repetitive sample, estimate and evaluate manner should
not contribute a lot of time to the estimation from a minimal sample as most hypotheses are
bad. However, inaccuracies of minimal solver has to be compensated by the thorough final
optimization.

4.1 Minimal solver

In RANSAC, an estimation from a minimal number of points in many tasks such as homogra-
phy, epipolar geometry, linear perspective-n-point, etc. requires finding a null space of a matrix
representing a system of linear equations. One of the most used methods is the singular value
decomposition (SVD) that returns a set of orthonormal basis vectors for the null space of the
input matrix. The SVD is a numerically stable procedure, which is often applied to solve many
optimization problems such as least-squares minimization. However, in RANSAC running
SVD in every iteration is quite inefficient since a lot of hypotheses can be arbitrary wrong.
This section suggests to use Gaussian elimination (GE) of a matrix to find a set of null vectors.
One can argue that GE is not accurate enough and in the presence of noise, it is going to affect
the quality of the estimated models. That is true, and this is the reason why a non-minimal
solver has to be introduced. Eventually, RANSAC estimates the final model from all inliers,
hence even if the model found via GE is less accurate than from SVD, the final LSQ polishing
makes either of them equally accurate. Experiments in section 9.2 support this statement.

4.1.1 Gaussian elimination

GE as a replacement of SVD can be used in estimation of homography, epipolar geometry, and
other tasks that require to find a null space of a matrix. The advantages of GE over SVD are as
follows:

1. It does not require any external libraries.
2. It can be used as detector of degenerate solution.
3. It is in order of magnitude faster.

First, the implementation of numerical methods such as SVD, eigen decomposition, or QR-
factorization requires advanced knowledge of linear algebra, especially for understanding the
milestones of these algorithms and making them stable. In C++, the most common libraries
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are OpenCV, Eigen, or LAPACK [10, 24, 1], while a clear advantage of GE is that its imple-
mentation is straightforward and short.

Second, since the code of GE can be easily written, it could be modified in a way to detect
degenerate inputs during the computation of null vectors. For instance, the matrix represent-
ing linear equations for homography must have rank 8 if four correspondences that give two
equations are in general position; however, if three points are collinear then the matrix is rank-
deficient. During elimination of rows (columns), if a pivot happens to be zero, it becomes
alarming that a matrix may not have full-rank, and the whole elimination process can be termi-
nated. Using SVD one can also check the number of non-zero singular values which gives the
rank of decomposed matrix, although since the code of SVD is not easily accessible, the earlier
termination is not possible. It was also mentioned that GE is not numerically stable, but this
issue arises from problematic points set. It implies that returning an imprecise solution will not
influence RANSAC, because the sample is still bad. Moreover, it is another way to distinguish
a bad hypothesis (i.e., check if a null vector does not contain NaN or Inf values) and reject it.

Third, additional experiments show that by substituting GE instead of SVD, the speed-up
of 4-point algorithm for H and 7-point method for F is around 10 times. Furthermore, GE
occupies much less memory, a simple modification of the GE function can return only the
desired number of null vectors, whereas SVD normally outputs three matrices.

An efficient estimation of homography using Gaussian elimination of a matrix representing
a linear system was presented by Bazargani et al. in [8]. Authors observed that a coefficient
matrix has special properties (e.g., rows with many zeros) that are used to find a null vector
very fast. The coefficient matrix of size 8× 9 has one-dimensional null space which results in
a homography that has 8 DoF after fixing the last element to 1.

For epipolar geometry one of the steps of estimation is to find null vectors and then apply
them to further computations. Hartley et al. in the implementation of an essential matrix solver
[27] extracted 4 null vectors accordingly to Nister’s 5-point algorithm [48] using GE. Unlike
homography estimation, the coefficient matrix is of size 5× 9 and the next trick was used: the
last four values for each null vector are fixed to 0 and 1, and other values then can be found
using back-substitution. The four null vectors are as follows:

e1 =
[
e11 e12 e13 e14 e15 1 0 0 0

]
e2 =

[
e21 e22 e23 e24 e25 0 1 0 0

]
e3 =

[
e31 e32 e33 e34 e35 0 0 1 0

]
e4 =

[
e41 e42 e43 e44 e45 0 0 0 1

]
A similar idea this thesis presents for fundamental matrix estimation from 7 points. The esti-
mation consists of two main steps. First, constraint x′>Fx = 0 that each correspondence imply
is used to build a linear system Af = 0, where A is the coefficient matrix of the system, and f
contains the elements of F in vector form [28]. Coefficient matrix A is of size 7× 9. Gaussian
elimination is then used to make A an upper triangular matrix as follows:

a11 a12 a13 a14 a15 a16 a17 a18 a19
0 a22 a23 a24 a25 a26 a27 a28 a29
0 0 a33 a34 a35 a36 a37 a38 a39
0 0 0 a44 a45 a46 a47 a48 a49
0 0 0 0 a55 a56 a57 a58 a59
0 0 0 0 0 a66 a67 a68 a69
0 0 0 0 0 0 a77 a78 a79


.

Since the fundamental matrix has 8 degrees-of-freedom, the two null vectors can have the last
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4.1 Minimal solver

element fixed to one as f
(1)
9 = f

(2)
9 = 1. Let the first null vector has a fixed eighth element

to zero f
(1)
8 = 0, thus, seventh element becomes f

(1)
7 = −a79/a77. Similarly, for the second

null vector the seventh element can be fixed to zero f
(2)
7 = 0 and, thus, the eighth one is

f
(2)
8 = −a79/a78. All other values of null vectors can be found by substituting the previously

found elements:

f
({1,2})
i =

−1

aii

9∑
j=i+1

f
({1,2})
j aij ∀i ∈ {1, . . . , 6} (4.1)

Further, the two found null vectors are used to find coefficients of 3-degree polynomial accord-
ingly to the 7-point fundamental matrix algorithm. Therefore, the speed-up concerns the part
of finding two-dimensional null space, which is usually done by SVD.

4.1.2 Linear Perspective-n-Point

The benefits of GE could be applied in the estimation of perspective projection P ∈ R3×4

matrix. When the calibration is not known, the matrix can be found from 6 points using the di-
rect linear transformation method. The projection matrix is given up-to-scale and hence has 11
degrees of freedom. Therefore, it requires 11 equations or 5 and ”half” points since each point
gives two equations. One can apply SVD for least-squares minimization of all 12 equations or
use Jackknife method [18]. As was already mentioned, RANSAC does not need necessarily
to have a precise minimal model. This section proposes a method which exploits the structure
of coefficient matrix representing a linear system of equations (similarly, as is done in [8]) to
solve it via GE. Let x = [u v 1]> be an image point, and X = [x y z 1]> is an object point.
The projection matrix P has vectors p1,p2,p3 in rows. The up-to-scale relation of the image
to the object point by the projection matrix is x ∼ PX . Then a matrix of linear equations is as
follows: 

...
01×4

X>

...
X>
01×4

...
−v X>
−uX>


p3

p2

p1

 = 0 (4.2)

The coefficient matrix above includes many zeros, and by replacing rows can be rewritten in
a way to align all zeros in columns. The whole matrix then can be splittied into two matrices
A ∈ R5×12 (the first five rows) and B ∈ R6×8 (the last six rows avoiding zero columns) as
follows: 

01×4

...
01×4

X>5

...
X>1

X>6

...
X>1

01×4

...
01×4

−v6X>6

...
−v1X>1
−u5X>5

...
−u1X>1

 =

[
A

06×4 B

]
(4.3)

At first, the matrix A is eliminated. The last row of the eliminated matrix Ã has 4 non-zero
values. This row of Ã in the column range 4-12 is stacked to matrix B, hence the new matrix
B′ has size 7 × 8. The matrix B′ has one non-trivial null vector of size 8 in which the last
element is fixed to 1. This null vector corresponds to the last 8 elements of the projection
matrix P. The other 4 values of P are then found by back-substitution of the null vector of B′

to the eliminated matrix Ã.
The elimination of a matrix has cubic complexity in the number of rows / columns. There-

fore, elimination of a matrix of size 11× 12 requires approximately 2-3 times more operations
than elimination of two matrices of sizes 5 × 12 and 7 × 8. Moreover, it reduces memory

19



4 Solver

allocation for matrices by around 10%. The speed-up of the proposed GE with respect to SVD
version is around 6 times in the experiments. However, the disadvantage of this approach to
SVD is that the latter one finds a solution in terms of least-squares for 6 points, while the
projection matrix of GE perfectly fits only 5 points, and the sixth one may have a non-zero
reprojection error in a presence of noise.

4.2 Non-minimal solver for epipolar geometry

In the minimal estimation, the idea is to generate models using cheap Gaussian elimination.
However, for the non-minimal solver, which has to return accurate solutions, more precise
methods should be used. For instance, homography and fundamental from non-minimal num-
ber of correspondences could be found by 4-point, 8-point algorithms respectively, in which
the covariance matrix, constructed from coefficient matrix of data points, is used. While GE
can still be used to find a solution, more accurate methods such as SVD should be employed.

The non-minimal optimization of a projection matrix can be similarly done using covariance
matrix and direct linear transformation, however the presented framework suggests using it
only in local optimization step, whereas for the final polishing to apply a much better direct
least squares (DLS) method [30].

In this section will be discussed the non-minimal estimation of epipolar geometry, i.e., fun-
damental and essential matrix. Experimentally, this work has found that the required con-
straints on the matrices (e.g., must be 2-rank) destruct the optimization process. A couple of
ideas on how to avoid this issue will be presented, whereas suggesting that the Gold standard
method [26] should not be applied as its computations can overcome the whole RANSAC run-
time.

4.2.1 Essential matrix

An efficient estimation of essential matrix from a non-minimal number of points is not an easy
task, because linear optimization as in the case for homography or fundamental matrix are
not suitable. Essential matrix must have rank two and the same singular values. If the same
method for fundamental matrix is used for essential matrix, then to obtain a valid solution, it
is necessary not only to enforce rank two, but also to equalize singular values. One can also
try to estimate F and then convert it to an essential matrix using calibration. Although, if the
fundamental matrix is consistent with a wrong pair of intrinsic matrices, then after conversion,
the essential matrix will have different singular values. In experiment 9.8.1 are results of both
methods. They sometimes generate better E than so-far-the-best but mostly do not improve the
results or give even worse models.

Another approach to estimate E without enforcing any constraint is to use a minimal solver,
where four null vectors are extracted from the covariance matrix of all inliers. It implies that
a non-minimal solution suits all given correspondences, however, this approach does not help
either.

This section proposes two options for estimating an essential matrix from non-minimal num-
ber of points. Both methods are based on the idea of partial (local) refinement of already
known essential matrix (e.g., from a minimal sample). Estimating both translation and rotation
(E = [t]×R) is not suitable for linear optimization due to additional constrains of rotation
matrix. Moreover, it could be computationally expensive with non-linear methods. By assum-
ing that either rotation or translation component is good, the goal is to improve the other one.
Eventually, the methods can be combined, i.e., firstly update rotation and then translation.

The first method is to fix the rotation matrix and refine translation. The objective function
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4.2 Non-minimal solver for epipolar geometry

is the minimization of algebraic error. Let y = K−11 x and y′ = K−12 x′ = [y′1, y
′
2, 1]> be

normalized image correspondences. Then epipolar constraint for E is

y′>[t]×Ry = 0 (4.4)

Since, R is fixed then after substitution of z = Ry = [z1, z2, z3]
> the translation t can be

estimated with simple linear optimization (e.g., PCA). The coefficient matrix is of size n × 3,
where n ≥ 3 is the number of correspondences, and the covariance matrix is of size 3 × 3. In
the matrix form, the problem is as follows:[

z2 − z3y′2 z3y
′
1 − z1 z1y

′
2 − z2y′1

...
...

...

]
t = 0

An initial R is obtained after decomposition of essential matrix. Since two rotations are pos-
sible, then two corresponding translation vectors can be estimated or just one for randomly
chosen rotation matrix. The final essential matrix is composed back via the new translation and
its corresponding rotation.

The second method is to fix translation obtained after decomposition (a scale of t is neg-
ligible) and refine rotation R ∈ SO(3). The objective is again the minimization of algebraic
error, although a new substitution is q> = y′>[t]×. A similar approach as in the directed least
squares method for PnP [30] is used. In spite of in PnP estimation, the cost function is different,
however, the problem definition seeks to find rotation and translation. Hesch et al. in [30] uses
several ideas to simplify the estimation. Authors employed Cayley-Gibbs-Rodriguez (CGR)
parametrization [7] of rotation matrix to express it using three-dimensional vector. This step
enables to have unconstrained optimization problem. Moreover, in [30] rotation appears lin-
early in the cost function as well as in the epipolar constraint q>Ry. Substituting the coef-
ficient matrix of PnP problem by the coefficient matrix of the epipolar constraint, the method
originates a valid rotation matrix. The maximum number of possible solutions is 27, however,
in experiment 9.8.1 the average number is 3.6.

4.2.2 Singular values

The experiment in 9.8.1 reports that both methods presented in the previous subsection provide
more accurate essential matrices than the ones estimated via linear 8-point algorithm. However,
the pose error and geometric accuracy are even better if the singular values are not corrected
in the 8-point method, i.e., the third value is remained non-zero, and the first two remain non-
equal. It suggests that the proposed methods can be helpful if the user needs precise essential
matrices.

In practice, although, essential matrix estimation is widely used to obtain a relative pose.
In this case, the precision of singular values of E does not matter. The reason is that the
decomposition of essential matrix into relative pose applies SVD of E = UDV>, where only
matrices U and V are used. Ideally, is to find a function which maps a noisy matrix of singular
values D to matrix D′ such that it has equal first two singular values and the third one is zero,
additionally, a RANSAC score of E′ from D′ is about the same as score of E. However, this
work does not intend to investigate the function as it seems to be sophisticated, whether it even
exists.

Lifting rank constraint can be also used in finding a fundamental matrix from a non-minimal
sample, where the 8-point algorithm must enforce 2-rank constraint by zeroing the third sin-
gular value. A precise F usually has fewer inliers than its noisy 3-rank version. This issue
has to be addressed since models with the high inlier number lead to the earlier termination of
RANSAC. Nevertheless, the goal remains to output an accurate 2-rank F. This section suggests
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to lift rank constraint in the local optimization to save time by avoiding SVD and finding mod-
els with high support number. Therefore, 2-rank F is found in the final optimization, where
8-point algorithm zeroes the third singular value.

In summary, the constraints of singular values can be lifted for fundamental matrix in the
local optimization, and for essential matrix if it is evaluated on the ground truth pose. The
results showing the gained speed-up of the proposal approach is in the experiment 9.8.2.
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In RANSAC, processing a so-far-the-best model is crucial for a validity of the found hypoth-
esis, and further performance of RANSAC. This step is responsible not only for the model
acceptance, but also for a degeneracy check, the local optimization (LO) of the model, update
of inlier ratio for the pre-emptive verification, and termination of the whole algorithm.

This chapter is going to discuss a role of LO method under the concept of the minimal and
non-minimal solvers. Additionally, it addresses LO issues related to its time complexity and the
likelihood of returning a degenerate model. Further, by incorporating a model non-randomness
will be proposed a new adaptive inlier threshold calculation, and quasi-random point selection
in the minimal sampling. Finally, a way of handling occurrence of multiple models structures
is presented.

5.1 Local Optimization

In LO-RANSAC [14] of Chum et al. is observed that all-inlier samples in the presence of
noise generate inaccurate models. The authors in [14] propose to apply a non-minimal model
estimation using inliers of so-far-the-best hypothesis. Since the least squares minimization is
done on the points consistent with model, it produces a better solution that fits more correspon-
dences than the one from a minimal sample. GC-RANSAC [4] of Barath et al. further extends
LO method by exploiting spatial coherence of points to apply graph-cut minimization problem.
Later, in MAGSAC++ [5] was presented iterative re-weighted least-squares local optimization
that appears to be more accurate than its predecessors.

The importance of LO method is not only improving the model quality, but in addition, it
leads RANSAC to terminate earlier by finding a model with a significant number of inliers.
However, in practice, LO could take a significant amount of time, overcoming the runtime of
the whole RANSAC. While a model obtained from LO still undergoes the LSQ polishing.

This section proposes to employ the idea described in chapter 4 that stands for fast estimation
of minimal models inside RANSAC, whereas the accurate solution is found in the final opti-
mization only once. Therefore, a role of the desired LO is to return a model with the highest
support so far to trigger RANSAC termination, and simultaneously to avoid time-consuming
computations.

In LO-RANSAC [14] is found that RANSAC updates so-far-the-best model log(K) times
(where K is the number of iterations). Experimentally, within 100 first iterations RANSAC
saves the model around 3-4 times (loge 100 ≈ 4.6), while for PROSAC where the first samples
are likely to originate good models, this number is even higher. It implies that LO can spend
a lot of time by optimizing hypotheses that will be rejected in RANSAC later within a small
margin of iterations. Moreover, the non-randomness verification should be applied as well to
avoid improving bad models. Additionally, models with a similar number of inliers as so-far-
the-best one are likely to represent the same structure, thus do not need to undergo LO step.

In the proposed formulation, the primary objective is to find a light-weight LO procedure
that runs swiftly and is applied only when it likely leads to termination. To do so, the following
conditions that control when the LO is applied are introduced:

1. The required number of iterations needed to find adaptive SPRT setting and a support size of
non-random model is reached. Additionally, it helps to avoid unnecessary first LO runs.
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2. The so-far-the-best model has the required number of independent inliers defined by (2.2).
3. The local optimization is applied only if the inlier sets of the new best and previous best

models has a lower than 0.95 Jaccard index, i.e., the intersection over union. This condition
is motivated by the tendency that if a model is just slightly different from the previous so-
far-the-best, the LO step likely does not refine it significantly, but the final optimization does
the main improvement.

Algorithm 2: Local Optimization, LO+

Input: I∗ – inliers of so-far-the-best model,
τ∗ – its score, s – non-minimal sample size,
Kmax – maximum iterations of LO.

1 θ∗LO := ∅; Imax := |I∗|
2 for t := 0; t < Kmax; t++ do
3 θLO := estimate (subset(I∗, min{|I∗|, s}))
4 τLO, ILO := evaluate(θLO)
5 if τ∗ ≺ τLO then
6 I∗, τ∗, θ∗LO := ILO, τLO, θLO
7 if Imax < |ILO| then
8 Imax := |ILO|
9 if KRANSAC > MaxIters(Imax) then

10 break
11 return: θ∗LO, τ∗, MaxIters(Imax)

The proposed LO+ method based
on the LO-RANSAC is shown in
alg. 2. It is important to note
that in this procedure, larger-than-
minimal samples are selected that is
typically avoided in RANSAC due
to increasing the problem complex-
ity and, thus, the number of itera-
tions required to provide probabilis-
tic guaranties of finding the sought
model parameters. In alg. 2, the
sample is selected from a set of
points that likely are inliers. There-
fore, the increased sample size does
not affect the accuracy and process-
ing time negatively.

At line 3 of alg. 3 the function
subset returns an inlier subset of
size either s or the number of in-

liers. The maximum inlier number of the estimated models is saved at line 8. Additionally,
the LO+ can terminate if new upper bound of iterations is lower than number KRANSAC of
iterations done by RANSAC, in line 10.

The sample size s and the maximum number of LO iterations Kmax are found empirically to
suit two-view geometric problems, minimizing the total run-time while maintaining the accu-
racy. For F / E estimation, the optimal sample size is 35 and number of iterations is 15, while
for H, the sample size is 40 and number of iterations is 10. For PnP the sample size is 30, and
the number of iterations is 4.

5.1.1 Termination

As was already mentioned, the local optimization aims to accelerate the termination of RANSAC
by finding the model having the highest number of inliers so far. Simultaneously, when the
model with sufficient inlier number is found, then LO itself should terminate. It is unnecessary
to continue LO otherwise, because the final optimization takes care of polishing so-far-the-best
model.

Moreover, one LO iteration is much slower than RANSAC iterations, i.e., non-minimal
model estimation is around 10 times slower as it uses SVD. By default, LO terminates if the
maximum number of inner LO iterations reached. However, under VSAC framework LO can
stop immediately when the termination criteria (e.g., the standard upper bound, PROSAC) are
satisfied. Despite the termination for minimal and non-minimal sampling is mixed, the locally
optimized model that triggers criteria can be seemed as a noise-free version of its minimal
model. Additionally, since the LO model is originated from inliers, it likely represents the
same structure.
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5.1.2 Degeneracy

The model that undergoes LO is already non-degenerate as it went through degeneracy check
(e.g., DEGENSAC+). However, there is no guarantee that non-minimal estimation generates
always valid models. While for homography it is fairly unlikely to draw a whole non-minimal
sample consisting of points on a line, for epipolar geometry estimation the case when all corre-
spondences are planar is possible. As it was suggested, the subset size for F should be around
35 points, hence the probability of fully planar sample is

( |IH|
|I|
)35 if points are drawn uniformly.

For instance, for 96% ratio of inliers consistent with homography, with the confidence 99% is
drawn at least one non-minimal sample of 35 planar points within 15 iterations. Therefore, the
odds become non-negligible when a field of view is a dominant plane, e.g., a building facade.

There are several ways to avoid degenerate solutions for F. First, using a homography ma-
trix, a set of points likely to be planar can be separated from inliers. Every time a non-minimal
sample is drawn, it must contain a few points out of plane. This test is extremely fast, because
a Boolean mask of planar correspondences is already computed in DEGENSAC+, hence the
verification of a small amount of sample points is negligible. Although, the disadvantage of
this approach stems from inaccurate classification of planar points based only on the repro-
jection distance and threshold. Consequently, good samples could be rejected if some true
non-planar matches are close to homography manifold. Moreover, outliers by chance consis-
tent with epipolar geometry in combination with planar points can lead to a degenerate solu-
tion. If estimation is done only on non-planar inliers then estimated F may not be accurate
enough. The second approach is to do the same non-degeneracy verification as was discussed
in DEGENSAC+. A new fundamental matrix must have a sufficient number of independent
inliers out of plane.

Both presented methods require homography (planar matches) to work with. However, even
if the scene contains planar structures, H must not be necessarily found in DEGENSAC+, i.e.,
7-point sample of so-far-the-best F consists of correspondences off a plane. It implies, that the
LO should not be used in this case. Moreover, the whole problem with degeneracy becomes
even more complicated if several planes are present in the scene. In this case, for instance, the
second proposal must verify that F has independent inliers with respect to each plane, or if
inliers of at least two planes are points consistent with F as well.

In section 6.2 will be proposed an approach that allows to run LO without degeneracy tests,
nonetheless, the final RANSAC model subjects to verification. This is done by efficient esti-
mation of homography via F inliers, and its further recovery if degenerate.

5.2 Adaptive inner threshold

Finding an optimal inlier-outlier threshold for RANSAC is not an easy task since many factors
as image dimensions or noise can influence a quality of an estimated model, thus how it fits data
points. This problem was addressed primarily in MAGSAC [6] which does marginalization of
point errors over the noise level, or in a-contrario RANSAC [19] that selects the best model by
a probabilistic approach avoiding threshold. However, in many cases, a set of inliers is required
to work with, for instance, in local optimization or obtaining the upper bound of iterations.

By setting the inlier threshold value too high, it can lead to earlier termination, although
usually a less accurate final model. Whereas a low threshold, first, does not always provide a
good solution, and second, heavily influence performance of RANSAC (i.e., primarily speed).
The low threshold’s value implies a low number of points consistent with a model that makes
inlier based methods less efficient. For instance, the local optimization draws subsets of inliers
to estimate model from a non-minimal number of points, hence the inlier set should be suffi-

25



5 So-far-the-best model
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Figure 5.1 The first and third plots are probability density histograms of consistent points to the GT
fundamental matrix (resp. homography). The x-axis shows square error distance of point to model,
i.e., Sampson error for F and reprojection distance for H. In the legends of these figures are names of
dataset from where image pairs selected. Histograms are averaged over image pairs within a dataset.
The second and fourth plots are corresponding cumulative probability histograms. Their legends
show the square threshold (error distance) of 80th percentile of histogram distributions.

ciently large for better sampling. In DEGENSAC+, a threshold for separation of planar points
is needed.

This section proposes to find so-called ”inner” threshold adaptively to solve the issue with a
user-given value. The ”inner” threshold does not necessarily replace the input one, but mainly
used for inner methods such as LO or DEGENSAC+. The approach requires a model which
is so-far-the-best and non-random. Next step is to compute a cumulative histogram of points’
squared errors with respect to the model parameter in the error range from 0 to the maximum
threshold (e.g., 10 pixels). Then the desired square inner threshold should be, e.g., 80th per-
centile of the cumulative histogram. It implies that the found threshold covers 80% of inliers in
the given error range.

This method stems from the fact that inlier error distances follow a distribution (e.g., Gaus-
sian or chi-square), while the error distribution of outliers in most cases is uniform. Therefore,
assuming a non-random model, it leads to expect that the density histogram (and CDF his-
togram) of point errors consistent with this model is likely to be similar to the true one.

Figure 5.1 shows error histograms of points with respect to the ground truth model. Datasets
of different average image sizes are considered. It demonstrates that each dataset requires a
slightly different threshold to cover at least 80% of points within the maximum error range.

5.3 Importance of multiple structures

Figure 5.2 An image pair with two dominant ob-
jects. Green and white correspondences con-
nected with lines are inliers of two fundamen-
tal matrices. The object ”A” (cylinder in the
left) was deliberately moved to create two pos-
sible structures for epipolar geometry estima-
tion, while the correct F is the one having white
matches.

It is generic for RANSAC to reject all
model structures that have a worse score
than the so-far-the-best one. However,
some discarded models could be more
suitable for users. It stems from the fact
that in practice there may exist multiple
structures in the scene, but only one of
them is a desired one. Therefore, unless
some prior information for RANSAC is
given, it is difficult to detect the correct
model. Moreover, considering RANSAC
”higher score wins” manner, an incorrect
structure with the highest number of in-
liers among all will be outputted, which
inevitably leads to a failure from the user
perspective.

For instance, let the task be to find a homography of a planar building facade, although there
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5.4 Quasi-random sampling

is no guarantee that it is the only planar object in the scene. The similar problem can arise
in epipolar geometry, where the found structure can represent an incorrect relative pose. In
figure 5.2 is shown a scene with static and dynamic objects. The correct F/E must represent
a camera relative pose with respect to static objects, while dynamic objects with a number of
good correspondences can destruct the estimation. In practice, it is often the case when two
images are taken at different times, hence some objects in the scene may have changed their
position.

The rules for applying LO in section 5.1 mentions Jaccard index of inlier sets to measure the
similarity of models. Models with high intersection over the union (IoU) of inlier sets must not
undergo LO. However, previous so-far-the-best models with low IoU (e.g., 1-5%) and equally
high inlier number should be additionally saved, as they may represent correct but smaller
structures. The presented framework is not meant to be a multi-model estimator, although there
is already a computation of Jaccard index before running the local optimization. Therefore, it
makes nothing but a small modification to save and output all structures of interest, so the user
can decide which one fits better.

5.4 Quasi-random sampling

Another improvement as finding a better model earlier can be achieved in RANSAC with uni-
form sampling. In the proposed framework the sampling is implemented using Fisher-Yates
pseudo-random shuffle [45]. A sampler draws randomly at uniform without repetition m (sam-
ple size) numbers from array filled from 1 to N (number of points).

In the so-far-the-best step, when a model with significant number of independent inliers is
found, this section suggests to order numbers in the array in a way that in the beginning there
are I inliers’ indices and the rest (N − I) are indices of outliers. The indices of inliers and
outliers are randomly shuffled. Then the quasi-random sampling draws m numbers from array
in chunks. Consequently, next bNmc iterations in RANSAC are performed by quasi-random
sampling, afterwards Fisher-Yates shuffle is back. To justify this approach, consider two cases.

First, assume the so-far-the-best model is bad thus its inliers are not consistent with the best
possible model. In this case, the order of numbers in the array does not matter, and since the
numbers are shuffled they are selected again uniformly at random. The only difference to the
pseudo-random sampling is that all numbers in the array are drawn exactly one time. This
distinction is not necessarily bad, on the contrary, a pseudo-random sampler might not draw
some good points (numbers) with a non-zero probability.

Second, let the so-far-the-best model is good, hence its support are correct points. Therefore,
since quasi-random sampler starts to draw points from the ordered array, then the first b Imc
samples should be promising as they consist of inliers. This leads to finding a better model
faster with earlier RANSAC termination. It could be seemed as LO with minimal sample size
integrated in RANSAC sampling, which does not avoid outliers and has almost no time cost.
The experiments of proposed quasi-random method is in experiment 9.7.
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6 Final Optimization

The final optimization plays an important role in the presented VSAC estimator. As was men-
tioned earlier, a new framework stands by the idea that RANSAC should finish as fast as pos-
sible, providing a valid model. While an accurate solution is found in the final optimization
(FO), which is run only once. For example, the minimal solver via Gaussian elimination and
the new construction of local optimization support this idea. In the textbook RANSAC, it was
suggested to run the least squares minimization (LSQ) on a set of all inliers in the end. Here,
will be presented a few approaches for FO as one least squares run is not enough to compensate
the deterioration of RANSAC minimal model accuracy. In addition, a couple of suggestions
related to epipolar geometry will be proposed.

6.1 Outlier removal

For the final least squares optimization, all inliers – consistent points with the so-far-the-best
model are used. However, in epipolar geometry estimation, there could be a small percentage
of correspondences that are consistent with a good model structure, however, they are totally
incorrect. For instance, matches that do not pass chirality constraint or near epipoles. Sampson
error distances of correct correspondences follow the normal distribution as is assumed in, e.g.,
MLESAC [57], which agrees with Gaussian noise of an image detector. Whereas, errors of
mismatched points are not Gaussian. The number of points by chance consistent with F is very
low, however, even a few of them can slightly destruct the least-squares solver. The experiment
in section 9.8.3 shows that removing these outliers marginally improves accuracy of the final
LSQ method. A few ways to filter out bad points are described further in details in section 7.1.

6.2 Homography detection

In section 5.1.2 was discussed that local optimization of fundamental matrix is prone to return
degenerate solutions in the presence of the dominant plane. Several options were proposed to
avoid this issue. However, it makes LO method more aggressive to reject good hypotheses.
Moreover, these tests require a homography to work with. Therefore, if H is not yet found, or
it is not present in the scene, then it implies that LO should not be run at all. The situation gets
more complicated when a scene contains multiple planes, because F must have a non-planar
support regarding every plane.

This section presents an approach that guarantees with 99.99% of confidence for RANSAC to
output a non-degenerate fundamental matrix yet making no changes in the LO method. The idea
is that locally optimized models are likely to be good structures with many points consistent
with them. Even if a so-far-the-best model of LO is degenerate, the corresponding support is
a lower bound of its non-degenerate version. The reason is that the latter model not only has
around the same number of correspondences on a plane, but additionally non-planar support
that makes it a non-degenerate. The outline of the procedure that aims to efficiently distinguish
a degenerate F and recover if needed is as follows:

1. If so-far-the-best F̂∗ is from LO:
2. Try to estimate a homography using F̂∗ and 3-point H RANSAC of F̂∗ inliers.
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6.3 Iterative least-squares

a) If H has not found then F̂∗is not degenerate.
b) Otherwise, compute a non-planar independent support of F̂∗.

3. If the support is fewer than a sufficient one (already estimated in DEGENSAC+) than try ei-
ther to recover fundamental matrix via H and calibration, or use plane-and-parallax RANSAC.

a) Accept the recovered F̂ if its score is better than of the last non-degenerate so-far-the-
best model.

b) Otherwise, select the latter one.

The step (2) assumes that F̂∗ is degenerate, hence its support is planar matches and some
randomly consistent outliers. Therefore, an efficient 3-point RANSAC draws samples from
inliers of so-far-the-best fundamental matrix. If the assumption is correct, i.e., support of F̂∗

is dominated by planar inliers, then RANSAC must terminate within a few iterations. For
instance, using confidence level 99.99%, and predicting at least 95% of H inliers the upper
bound for 3-point RANSAC is only 5 iterations. If the assumption is wrong, thus F̂∗ is non-
degenerate, then 3-point RANSAC will likely fail to find a good homography within 5 samples.

Step (3) of recovery is actually not necessary, because a non-degenerate model is known.
Although, since F̂∗ is assumed to be a good structure (despite being degenerate) it is worth
to make an attempt to recover it. In any case, the fundamental matrix undergoes the final
optimization after this test.

6.3 Iterative least-squares

All-inlier least-squares optimization could significantly improve the quality of the final model.
In the experiment in section 9.6 was observed that several iterative all-inlier LSQ runs can
generate even more accurate solution. Each model after LSQ iteration becomes better and,
thus, has larger support that is used for the next LSQ estimation until it converges. The iterative
LSQ approach compensates the accuracy trade-off that is done for a minimal estimation and
local optimization.

The main issue to be addressed in this section is on how to make the iterative LSQ fast. For
homography and epipolar geometry estimation, the non-minimal estimation described in [28]
is as follows. (1) Compute transformations 3× 3 matrices T and T′; normalize sample points
such that their centroid is at the origin, and the average distance of points from the origin is

√
2;

(2) compute a covariance matrix from a coefficient matrix of linear equations (either 4-point
method for H or 8-point for F); (3) find the solution in terms of least-squares by applying SVD
or QR factorization on the covariance matrix; (4) transform the model back via T and T′. Note,
this method is algebraic error minimization.

The LSQ description above is expensive, even for a few runs. The most computationally
exhaustive part is normalization and calculating the covariance matrix of inliers, as it linearly
depends on a number of used points; while time for decomposition of covariance matrix is al-
most constant. Therefore, a new method LSQ with covariance matrix resolves both problems.
First, the normalization is done only once for all points; the presence of incorrect correspon-
dences does not destruct the transformation matrices T and T′. Second, the method assumes
that most of the inliers after each LSQ iteration remain the same, while some new ones appear.
Therefore, the covariance matrix is also built only once, and in the new LSQ iteration, it is
updated by adding new points or subtracting ones that become outliers. The number of LSQ
iterations is set by user, however, the method terminates when Jaccard similarity of inlier sets of
the previous and new model is higher than e.g., 95%, because there is no reason to apply LSQ
on the same inlier sets. The complexity of this procedure is one normalization of all points,
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6 Final Optimization

one construction of covariance matrix, and k (i.e., number of LSQ runs) covariance matrix de-
composition. The only disadvantage is a slight overhead for normalization if most of the input
correspondences are outliers.

A more accurate way of the final model polishing is to apply the iterative reweighted LSQ of
MAGSAC++ weights. The idea of a single covariance matrix should not be used in this case,
because weights of inliers are updated in each iteration. In the experiments 9.6 this is so far the
most accurate LSQ approach.
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7 RANSAC output

The RANSAC algorithm usually outputs only one model with the highest found support and
corresponding tentative inliers. In some applications, e.g., in 3D reconstruction or bundle ad-
justment, mainly inliers are used. However, the quality ranking of inliers, which could have
been helpful in practice, is not returned. For instance, inliers could be sorted by their residuals
to so-far-the-best model. This chapter presents a few ways to discard incorrect inliers consis-
tent with the final epipolar geometry. Additionally, it suggests to ”correct” good points that
could be beneficial for reducing geometric error on the ground points.

7.1 Detection of outliers

Inliers of epipolar geometry are points lying on epipolar lines, in RANSAC a point is inlier
if, e.g., its Sampson distance [25] falls below a user-defined threshold. However, if points are
inliers, they must not necessarily be true correspondences. Tentative correspondences obtained
from a key-point detector and undergone through a matching procedure, may by chance lie
on epipolar lines of the true fundamental matrix, even if they are incorrect. If an image pair
contains a lot of repetitive patterns (e.g., windows on a building facade), then the matching
process of e.g., SIFT descriptors can match two points of different locations in the real scene.

The ratio of incorrect inliers by chance consistent with the true fundamental matrix can be
found by considering image dimension and inlier-outlier threshold, i.e., fraction of strip around
epipolar line to the area of possible outlier appearance [43]. Inliers of epipolar geometry are
points lying on epipolar lines, in RANSAC a point is inlier if, e.g., its Sampson distance falls
below a user-defined threshold.

7.1.1 Uncalibrated case

When intrinsic matrices are not given, this work proposes to detect incorrect inliers using epipo-
lar orientation (chirality) constraint [15] of Chum et al. The test for a correspondence pair
(x,x′) ∈ R3 is as follows:

e′ × x′
+∼ Fx (7.1)

The valid epipolar geometry always satisfies this constraint for true correspondences. Incorrect
points by chance consistent with the true epipolar geometry can be easily distinguished if they
validate the constraint. Note, this check is also used in RANSAC for verification of F and E
using its minimal sample. Therefore, all models and their samples are correct, however, other
inliers may not pass the orientation test.

Another robust and cheap method to detect outliers is to use symmetric geometric distance
(SGD) instead of Sampson error, i.e., calculate the sum of distances of image points x and
x′ to its corresponding epipolar lines F>x′ and Fx. The Sampson distance is an accurate
approximation of geometric error, i.e., it is Euclidean distance in 4D space from the given
correspondence to the one which perfectly lies on the epipolar lines. Sampson approximation
is commonly used for evaluation of epipolar geometry, however, additional experiments show
that it is not robust to incorrect points that lie near epipole. This problem can be discussed in
two situations.
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7 RANSAC output

In the first case, if an image point is close to epipole it generates no epipolar line on the sec-
ond image. Consequently, epipolar constraint holds even if this correspondence is not correct.
Sampson approximation returns zero 0 error distance, while SGD error does not. For example,
let a point x is located near epipole e and a corresponding point x′ is not, then the generated
epipolar line is Fx ≈ Fe = 0. The situation which happens with both error functions is as
follows:

���
��: 0

|x′>Fx|√
�
��
�* 0

[Fx]21 +��
��* 0

[Fx]22 + [F>x′]21 + [F>x′]22

= 0 (7.2)

���
��: 0

|x′>Fx|√
��

��* 0

[Fx]21 +��
��* 0

[Fx]22

+
���

��: 0
|x′>Fx|√

[F>x′]21 + [F>x′]22
= NaN (7.3)

The subscript [v]i denotes the i-th element of a vector v. In practice, although, since points
usually are not precisely near epipole and due to numerical issues, the SGD error is not NaN
but far from 0, which helps to recognize such correspondences.

The second case is slightly more complicated and relates to the spatial location of corre-
spondences. Let x ↔ x′ be a correspondence with Sampson error close to 0, while SGD is
more than tens of pixels, and neither of the points is near epipole. It means that there exists
a correspondence x∗ ↔ x′∗ which perfectly lies on epipolar lines and moreover is close to
x↔ x′. In the experiments, the following scenario occurred, x∗ is just slightly distant from x
(similarly x′∗ is close to x′), however, an angle between epipolar lines Fx∗ and Fx is around
15-20 degrees. As a result, x′ is far away from Fx which explains the high SGD error.

Note that this section does not recommend to use SGD instead of Sampson error in RANSAC,
whereas suggesting using it only for outlier removal. Incorporating Sampson distnce in RANSAC
provides better results in the experiments. Additionally, the inlier-outlier threshold better agrees
with Sampson approximation of a correspondence lying precisely on epipolar lines. In sum-
mary, the proposed approaches for detection of incorrect points consistent with so-far-the-best
model can remove up to 0.5% of bad inliers, that are usually a couple of matches. However,
experiments in section 9.8.3 show that removing even a few bad inliers can improve estimation
results.

7.1.2 Calibrated case

An epipolar geometry represented by fundamental (essential) matrix together with intrinsic ma-
trices are commonly used to filter incorrect correspondences by chirality constraint. Although,
it does not guarantee that all wrong points are removed, because there are still small amounts
of 3D points having positive depths, but theirs image projection correspondences are totally
wrong despite satisfying an epipolar constraint. The true depth of 3D point remains unknown
since the decomposition of essential matrix provides only the up-to-scale translation, however,
for a method presented here, it is enough to detect bad points.

Experimentally, this work has noticed that depths of some reconstructed points could be
significantly lower or higher than others. After a manual verification of their image correspon-
dences on a number of image pairs, it was found that most of these matches are incorrect.
Therefore, this section proposes to sort depths (e.g., in increasing order) and cut 1% of points
in both tails. It is very likely that invalid points will be cut out. However, depths of 3D points
are scene-dependent, thus the suggested procedure could remove points corresponding to close
or far objects. Nevertheless, a single outlier can harm much more than a correct point, conse-
quently, even if some inliers are falsely removed it will not be as bad as if some bad points are
used in the next post-RANSAC computations.
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7.2 Correction of points

The new DEGENSAC+ includes adaptive method for estimation of suitable intrinsic ma-
trices. Experiments show that even if calibration matrices slightly differ from the given ones,
they still can be used to remove incorrect correspondences with chirality constraint. The tri-
angulated 3D points of approximated calibration are different, but wrong points have negative
depths.

7.2 Correction of points

Methods for point corrections could be used for several reasons. First, it improves precision
of the ground points obtained either by manual annotation or from keypoint detector followed
by matching selection. In either case, the presence of noise in correspondences is almost in-
evitable. Even if annotation went well and points supposed to be noise-free, the discrete nature
of photography (i.e., the scene is projected to a grid of pixels) prevents having perfect points
with no noise. Therefore, the correction of the ground truth (annotated) points can refine noisy
points.

Additionally, the correction can make inlier points error-free with respect to the final model.
It is convenient for users who do not want to run bundle adjustment. The VSAC framework can
output corrected points for homography and epipolar geometry estimation problems.

7.2.1 Homography

A way to ”correct” points on both images is by introducing ”half” homography which trans-
forms points from two images in the middle, average them and transforms them back. The
”half” homography A is a square root of homography matrix such that H = AA. The exis-
tence of a matrix square root requires a positive real part of eigen values as is described in [17].
The proof that planar H satisfies this condition is not a part of this paper, however, in practice
homographies fulfil it. In the figure 7.1 is visualization of a ”half” homography transformation.
The middle point is defined as follows:

m =
φ(Ax) + φ(A−1x′)

2
(7.4)

Where φ : R3 → R3 is a mapping which normalizes homogeneous point by z-coordinate. Then
”corrected” points are the following:

x̃ = φ(A−1m) and x̃′ = φ(Am) (7.5)

The proof showing that a ”corrected” correspondence has zero reprojection distance to homog-
raphy matrix is in appendix 11.2.

Figure 7.1 The left most image is a reference, the right most is a destination. Two images in the
middle (supposed to be the same) represent ”half” homography transformation from the reference to
destination and vice-versa. The second image was generated by projecting points of the destination
image by the inverse of square root of homography, and the third image was generated by projecting
points of the reference image by the square root of homography.
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7 RANSAC output

7.2.2 Epipolar geometry

In the case of epipolar geometry, a ”corrected” correspondence (x̃, x̃′) must lie perfectly on
epipolar lines (i.e., x̃′>Fx̃ = 0). The exact procedure was presented by Hartley and Sturm
in [29] which requires building a six-degrees polynomial; hence the method can be quite slow
for a high number of points. A significantly faster iterative procedure was proposed by Lind-
strom in [39] that usually converges just in a few iterations. Moreover, if the intrinsic matrices
are given, then the procedure in [39] enables to efficiently obtain triangulated 3D points.
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8 VSAC framework

This thesis presents a RANSAC-like framework – VSAC, which includes different settings,
state-of-the-art methods, and proposed improvements described in previous sections. The
framework solves computer vision problems such as fundamental, essential, homography, and
perspective projection matrix estimation. The idea of VSAC is not only to be fast and accu-
rate on the estimation tasks, but also to work under different configurations that suit specific
problems, prior information, and to provide freedom of input setting for users.

8.1 Implementation

Algorithm 3: VSAC
Input: P – points, P – set of all

parameters.
1 create objects using P and P
2 for i← 0; i < K; i++ do
3 S ← sampler.draw()
4 if ¬verifier.valid(S) then
5 continue
6 Θ̂← solver.estimate(S)
7 for θ̂ ∈ Θ̂ do
8 if ¬verifier.valid(θ) then
9 continue

10 s← evaluator.score(θ̂)
11 if s � s∗ then
12 θ̂′ ← verifier.recover(θ̂)
13 if θ̂′ = ∅ then
14 continue
15 s′′, θ̂′′ ← LO.refine(θ̂′)
16 if s′′ � s∗ then
17 s∗, θ̂∗ ← s′′, θ̂′′

18 K ← terminator.iters(θ̂∗)

19 θ̂∗∗ ← polisher.refine(θ̂∗)
20 return: θ̂∗∗, evaluator.inliers(θ̂∗∗)

The framework is implemented in C++ from
scratch. The code is written in object-
oriented programming style where objects
and classes represent the main parts of
RANSAC algorithm. That is, sampling, sam-
ple verification, minimal model estimation,
model verification and evaluation, check for
degeneracy, local optimization, termination,
and final optimization. For instance, ab-
stract classes are Sampler, Verifier,
Terminator etc.

The reason for this is to make the frame-
work more universal. The abstract class de-
fines an interface and certain functions of its
child class. For example, from Sampler
are derived implementations of uniform or
PROSAC sampling with the common func-
tion like generate sample(). A user
can switch among different provided options
or easily integrate their own new method.
Similarly, the framework is universal for all
estimation problems that require RANSAC,
hence by changing the minimal and non-
minimal solver, VSAC is finding a solution
to other tasks.

The framework is using mostly OpenCV
library [10]. Some parts of the code also use
Lapack [1] and Eigen [24] which are not es-
sential but provide faster computation. An earlier stage of VSAC was integrated into OpenCV
as part of Google Summer of Code 2020. It could be run with flags that begin USAC as there
are different settings, e.g., fast, accurate, or parallel versions.

VSAC is outlined in algorithm 3. Inputs are points (sorted for progressive sampling) and set
of all parameters used in each object (component). The parameters are extensive as they should
allow a user to change tiny details of inner methods (e.g., number of iterations in local opti-
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8 VSAC framework

mization), hence it provides advanced settings. However, most of the values are set by default,
and only the main parameters such as name of solving problem, confidence, the maximum
number of iterations, and inlier threshold are mandatory. Afterwards, the objects are initialized
accordingly to a given set of parameters. The framework can be used either in the experienced
mode or by one function call.

The universal framework in alg. 3 extends the original RANSAC procedure in several ways.
The first thing to note is a line 4 where Verifier checks correctness of sample, e.g., there
are no three points on a common line for homography estimation. It again plays a role in fur-
ther verification of model (line 8), for instance if epipolar geometry satisfies the orientation
constraint [15]. At line 10, for simplification Evalutator includes both a model score com-
putation and pre-emptive verification like A-SPRT (the score is empty if solution is rejected).
Verifier at line 12 checks so-far-the-best model for degeneracy (e.g., fundamental matrix
via DEGENSAC+) ; for convenience it can return (1) the same model from minimal sample if
the model is not degenerate, (2) (best found) non-degenerate model or (3) empty solution when
it cannot recover. The test for degeneracy / recovery is more complex and computationally
expensive than the verification of sample and model parameters, hence it is done separately in
the model acceptance part. After a valid model is obtained, it undergoes the local optimization;
all proposals regarding LO are not outlined in alg. 15 but they are preserved in the framework.
Terminator returns an upper bound number of iterations or 0 for immediate termination at
line 18. Finally, the so-far-the-best model is polished, and it is outputted together with (cor-
rected) inliers.

8.2 Parallelization

Parallelization is an important part of computation as new technologies have become more
advanced. It helps to gain a significant speed-up for free just using computer properties without
any accuracy trade-off. While for some tasks the parallelization could be a bottleneck, although,
for RANSAC it is more straightforward, because iterations are processed almost independently.
This section presents a procedure that allows not only to parallelize the original RANSAC but
the whole framework, i.e., every combination of different components.

The main key of parallelization is to divide all computations among threads separately and
avoid their synchronization. For instance, the textbook RANSAC proceeds as follows. At each
iteration the algorithm draws a minimal sample, estimates model(s), calculates its support,
and checks whether the model is a so-far-the-best. Every step can be processed by a thread
independently until the part, where a new model’s score is compared to the so-far-the-best
one. Only one thread must process this step, because read / write access to shared variables
by several threads causes wrong synchronization. This can be solved by introducing a mutex
which encloses an area where a so-far-the-best model is updated. However, it is not an ideal
solution, because mutex will be used in every iteration by every thread which results that some
threads have to idly wait until they get a chance to enter the area.

A better and more elegant way is to parallelize not the loop over iterations, but the whole
RANSAC(s) itself. In other words, the number of running RANSAC(s) is the same as the
number of available threads. The communication among threads is given by a single boolean
variable terminate which states when all individual runs must finish. The termination happens
when the maximum number of iterations is reached or the termination criteria are satisfied.
In either case, another integer variable (Th in Alg. 4) has to be introduced, which counts how
many iterations (hypotheses) have been processed by every RANSAC(s) in total. Both variables
(terminate and Th) should be atomic, so they guarantee thread exclusion for every read / write
operation. Moreover, atomic operations are performed way much faster than using mutexes.
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8.2 Parallelization

To integrate these variables with RANSAC, a couple of minor changes must be made. In the
beginning, both terminate and Th are initialized to false and 0 (respectively); additionally, since
the RANSAC framework is based on objects (sampler, solver, etc.) then each thread receives
its own copy of the object to avoid thread collision. At first, before drawing a sample RANSAC
checks whether the variable terminate is true; if so, then it stops, otherwise it increments Th. If
the value of Th is higher than the maximum number of iterations (given by user) then terminate
is set to true. Additionally, the terminate can be updated to true when termination criteria are
fulfilled in so-far-the-best step, e.g., no better model exists (with predefined confidence) by the
standard termination criterion. Eventually, each RANSAC thread has its own final model, the
so-far-the-best one is selected with the best score among all threads.

Algorithm 4: Parallel RANSAC
Input: state – state of random generator,

K – max. iterations
1 atomic bool terminate← false
2 atomic int Th ← 0 // num hyp.
3 atomic int S ← m // subset size
4 atomic int S∗ ← |P| // stop size
5 // parallel for-loop
6 for t← 0; t < MAX THREADS; t++ do
7 t state← state + t
8 for i← 0; i < K; i++ do
9 if terminate then

10 break
11 terminate← Th++> K
12 if IS PROSAC then
13 if S = f(Th) ∧ S < S∗ then
14 S ← S + 1
15 // continue ...

16 else
17 S ←generate(t state)

18 // continue ...

19 if θ̂∗ is the-best-so-far then
20 terminate← criteria(θ̂∗)
21 models[t]← θ̂∗

22 if IS PROSAC then
23 // update S∗

24 return: BestModel(models)

Given PROSAC sampling, it slightly
complicates the parallelization, because
samples must be drawn sequentially from
the most promising ones. A naive solution
is to pregenerate all samples in the begin-
ning and split them equally within threads,
however, it is slow for the large number of
iterations. The best option is to introduce
two other integer atomic variables that de-
fine PROSAC behaviour. The first is sub-
set size (S) which determines a range of
top S points to be drawn; the second is
termination length S∗ which is the upper
bound of S. Both parameters are described
in details in [13]. Briefly, S is updated by
a growth function (f in Alg. 4) of num-
ber of tested hypotheses (Th), which can
be precomputed for all threads in advance.
While S∗ is updated when a new so-far-
the-best model is found. Atomic opera-
tions enable to safely change these vari-
ables and preserve sequential PROSAC
performance. As well as in parallel uni-
form version, for parallel PROSAC ran-
dom generators of different seeds are used.
Therefore, generated samples are differ-
ent.

The first thing to mention is that the
presented parallel version makes the same
number of iterations as the sequential
RANSAC and no miscalculations related

to parallelization are possible. It controls by two shared atomic variables, safely processed
under concurrency, and the own local copy of objects for each thread. Second, the theoretical
speed-up is proportional to the number of cores, as most of the computations are done inde-
pendently. Although, there is a certain overhead caused by thread initialization. The parallel
approach also works for different combinations of RANSAC-like algorithms, e.g., including
local optimization or SPRT. because atomic variables are not restricted by any of RANSAC
components. All RANSAC(s) will immediately terminate when one of the thread set terminate
to true regardless of which termination criteria are used.

However, the main disadvantage of the parallel version is no guarantee to output the same
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8 VSAC framework

result as a sequential RANSAC. The reason for this stands by the fact that run of threads is
random itself. For instance, for uniform sampling, each RANSAC thread has its own random
number generator of a different seed, hence the order of drawn samples corresponds to runs of
threads that are completely random. In theory, it is still possible to force the parallel version to
work as sequential by pregenerating all random numbers in advance. Similarly, it also implies
that giving the same seed for a random generator and the same input, the parallel method does
not return the same result every time. While even the sequential RANSAC is not deterministic
in theory either, although some implementations can make it possible by providing an initial
state (integer number). It is convenient to compare how small changes reflect the change in
output, and this is done in VSAC framework.

The parallel approach is outlined in algorithm 4. The scheme only shows the modifications
that should be made to get the presented parallel version, while other RANSAC steps are the
same, thus skipped. Under VSAC setting including A-SPRT, DEGENSAC+ etc. the parallel
version is being not only faster but surprisingly more accurate in experiment 9.9. The expla-
nation for this could be that running several complex RANSAC(s) (e.g., that require adaptive
SPRT) may reduce the risk of bad initialization. Moreover, a number of local optimizations
for parallel method is higher, suggesting that the probability of finding a better model is higher
as well. Technical improvements that could help speed up the parallel framework even more,
can be achieved by additional synchronization of a current so-far-the-best score. It is done
by introducing an additional atomic variable corresponding to the best found score that is up-
dated only in so-far-the-best step. This aims to keep all threads synchronized. Especially, it
can boost rejection of bad models in A-SPRT for all threads, because more information about
so-far-the-best model is available.

While there is a speed-up close to number of cores, although parallel version may not be
faster for problems with high inlier ratio, and sometime for PROSAC as it usually finishes
quickly, depending on the ranking quality. The reason is that the initialization of threads could
overtake the whole time of even sequential version. Therefore, using parallel RANSAC is not
suggested for ”easy” tasks.
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9 Experiments

This chapter discusses and shows evaluations of the proposed methods (e.g., Adaptive SPRT),
and finally compares the framework itself against other existing RANSAC implementations.
To minimize any confusion with methods’ names, the VSAC framework is a set of state-of-the-
art RANSAC methods like PROSAC, DEGENSAC, GC-RANSAC etc. However, the VSAC
settings are new LO+, A-SPRT, DEGENSAC+, orientation tests, and PROSAC if point ranking
is given. Some experiments include simple RANSAC setting (with DEGENSAC+ and sample /
model validation tests to confront invalid models) to avoid effects of other parts on the clearance
of results. The common VSAC (RANSAC) input parameters for most of the experiments are
99% confidence level (no better solution exists), the inlier-outlier threshold: around 1 pixel
for epipolar geometry and around 2 pixels for H and PnP. The threshold was set additionally
considering average image dimension in datasets.

The experiments are mainly concern homography (H) and fundamental matrix (F) esti-
mation, however some of them also include essential matrix (E) and perspective projection
(denoted as PnP). Estimation problems are run on a various publicly available real-world
datasets: (1) KUSVOD [36] includes correct labelled correspondences and the ground truth
(GT) F; (2-3) PHOTOTOURISM [53] and STRECHAMVS [55] contain GT relative pose with
intrinsic matrices (used for F and E); (4-5) EVD [44] and HOMOGR [36] have labelled cor-
rect matches and GT homography matrix; (6) HPATCHES [2] includes GT homography matrix;
(7-9) T-LESS [31], LM-O [9], and YCB-V [60] for PnP contain GT poses with calibration (in
experiments only data with a single pose are used).

The evaluation of algorithms is in terms of running time and either geometric accuracy for
H,F or pose error for E and PnP. In the case of geometric accuracy, image matches are divided
into two disjoint sets, where the first one is used for the RANSAC input, and the second set of a
few dozens of selected points consistent with the GT model is used for a model validation. For
F the accuracy is measured by mean geometric error (i.e., distance of input GT points to their
optimal correction on 4D manifold consistent with an estimated F̂), and for homography it is
root-mean-square deviation of reprojection distances of GT correspondences to an estimated Ĥ.
The pose error is measured as average of axis angle of composed rotation matrix R = R∗>R̂
(where R∗ – GT rotation, R̂ – estimated rotation) and arc cosine of the dot product of GT and
estimated translation vectors. For Ê the pose error is minimum of four decomposed poses, and
the pose for PnP problem is found after decomposing a projection matrix.

Results report error in pixels (px) for H,F or in degrees for E,PnP; run-time in milliseconds
(ms) averaged over image pairs from a dataset. Additionally, to avoid extreme (outlier) results,
the median of errors (and run-time) over all runs and percentages of better results per image
pair are shown. To avoid randomization of experiments, the same initial seed was given to the
random number generator of RANSAC, therefore, all methods start operating equally. In case
neither method has shown any difference, this run is excluded.

9.1 Independent inliers

This section describes the proposed method in chapter 2 for detection of random solutions.
Additionally, it shows the influence of dependent inliers on the method’s accuracy. A Poisson
parameter for the non-randomness test is estimated from the first 21 models of RANSAC.
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# of RANSAC iterations
Problem λ̄± σ ∼ 102 ∼ 103 ∼ 104 ∼ 105

H
w/o 4.26 ± 0.19 95.3 92.0 84.9 79.6
w 0.00 ± 0.00 100.0 100.0 100.0 100.0
w∗ 0.00 ± 0.00 100.0 100.0 100.0 100.0

F
w/o 9.41 ± 1.20 84.6 80.3 78.6 75.3
w 1.42 ± 0.75 99.0 99.0 99.3 99.3
w∗ 1.35 ± 0.80 98.7 99.3 99.7 99.3

Table 9.1 Percentage of detected failures by the proposed criterion (2.1) with (w and w∗) and without
(w/o) removing dependent inliers on homography H and fundamental matrix F estimation problems
when trying to match image pairs without a common field-of-view, i.e., they do not match. For(
w∗) case, all models are generated by artificially corrupted point samples. The column λ̄ ± σ shows
Poisson parameter averaged over image pairs with its standard deviation.

Table 9.1 reports percentages of successful failure detection of RANSAC running on image
pairs with no field of view (300 pairs are matched via SIFT [40] detector with 0.8 ratio score;
the same pairs are used for both F and H). Since there is no common structure, RANSAC
fails every run. The methods with removing dependent inliers give better results as its role is
crucial for the whole method. Dependent inliers (e.g., close points) increase the support of bad
models making it much higher than Poisson parameter (average number of points consistent
with a bad model), hence the models appear to be good ones. Another observation is that since
all sample contain bad points, the Poisson parameter of corrupted samples is almost equal to
the one estimated from random samples. Both methods with removing dependent inliers show
similar accuracy.

λ± σ λ′ ± σ′ λ∗ ± σ∗

H 65.73 ± 162.8 51.88 ± 137.7 0.02 ± 0.1
F 20.52 ± 12.7 12.66 ± 11.9 4.25 ± 1.2

Table 9.2 Comparison of estimated Poisson pa-
rameters averaged over matchable image pairs
(HPATCHES dataset for H and PHOTOTOURISM
dataset for F) with their standard deviation; λ –
without removing dependent inliers, λ′ – with re-
moving, λ∗ – with removing independent inliers
of models generated from corrupted samples.

# of RANSAC iterationsH ∼ 102 ∼ 103 ∼ 104 ∼ 105

# f 16 16 16 16
# d 10 4 3 0

Table 9.3 # f shows number of RANSAC
failures for homography estimation for a
range of the maximum iterations (in the
columns). The second row # d shows num-
ber of failures detected by non-randomness
test.

In table 9.2 are reported estimated Poisson parameters of image pairs from matchable datasets
(100 pairs are used). Only Poisson parameter of independent inlier counts of models generated
from corrupted samples is not spoiled, and it is close to the one reported in table 9.1. Sur-
prisingly, the method with removing dependent inliers of destructed Poisson parameter does
not have any false negatives (detecting a good model as the random one). However, to avoid
any possible false negatives, the method with generating corrupted samples should be used.
Additionally, table 9.3 shows number of failures detected in the matchable scenes only for H
estimation, where the failure model has geometric error higher than 15 px. The method cannot
detect all failures, because so-far-the-best model may describe a non-random structure which
is not the correct one.
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9.2 Gaussian Elimination

9.2 Gaussian Elimination

This section compares two RANSAC, one uses singular value decomposition (SVD) for all
H,F,E and PnP to obtain a set of null-vectors, the other uses Gaussian elimination (GE).
Table 9.4 experimentally suggests that replacing SVD by GE speeds up RANSAC several times
with almost zero accuracy loss. The number of runs is 100 for each estimation problem.

In E estimation, it can be seen that RANSAC with GE makes slightly more iterations, while
still having the same accuracy. It can be explained that in rare occasions, the output essential
matrices of a minimal sample have a slightly fewer inlier number, hence RANSAC needs more
hypotheses to test, however the accuracy is the same. Note, in this experiment, the geometric
error for E is used.

For P6P the situation is less certain. First, in this experiment a synthetic dataset is used,
because both P6P RANSAC were providing bad results on benchmark datasets [60, 31, 9].
Second, RANSAC with SVD solver seems to be more accurate as it makes much fewer itera-
tions, although due to the efficacy of GE solver, the RANSAC with SVD is still being slower.
The reason for being more accurate comes from finding a solution in terms of least-squares
of 12 linear equations (6 points), while GE is applied to 11 equations (5 and half points). The
Gaussian noise with 0 mean and standard deviation 0.4 was added to the image points, implying
that for a higher noise level, the GE solver may work even less accurately.

Kmax = 104 Kmax = 5 · 104 Kmax = 105

tavg εavg Kavg tavg εavg Kavg tavg εavg Kavg

H SVD 5.6 0.70 372.9 5.6 0.70 372.9 5.9 0.70 372.9
GE 2.8 0.70 372.9 2.9 0.70 372.9 3.0 0.70 372.9

F SVD 155.7 0.47 6570.2 440.7 0.34 22697.6 664.7 0.34 36369.8
GE 43.9 0.45 6621.2 116.0 0.38 22540.4 169.7 0.33 35657.6

E SVD 173.2 0.53 2474.9 324.7 0.49 5168.7 381.0 0.49 6182.7
GE 143.9 0.53 2475.2 261.5 0.49 5169.0 311.6 0.49 6183.0

P6
P SVD 222.0 26.92 10000.0 915.2 0.00 48136.8 1214.1 0.00 67357.4

GE 131.1 6.30 10000.0 653.0 0.57 50000.0 1037.2 0.00 89946.8

Table 9.4 Comparison of average error (εavg in px. for H,F,E, and in degrees for P6P), average time
(tavg in ms), and average number of iterations (Kavg) over a number of runs for RANSAC with SVD
and GE (Gaussian elimination) minimal solver. The experiments have performed over a range of the
maximum iteration number for RANSAC denoted as Kmax. The lowest values are highlighted in red.
RANSAC with GE solver is the fastest in the whole table.

9.3 Adaptive SPRT

H F
method

tavg tmed εmed R #f tavg tmed εmed R #f
NO-SPRT 10.2 8.2 1.44 0.0 25 76.7 76.6 0.49 0.0 0
SPRT 2.1 2.0 1.45 574.9 40 40.4 39.5 0.59 3159.2 195
A-SPRT 2.9 2.5 1.44 564.7 25 44.4 45.8 0.49 3114.6 0

Table 9.5 Comparison of RANSAC without SPRT (NO-SPRT), with original SPRT settings (SPRT),
and new adaptive A-SPRT, in terms of average and median run-time (tavg, tmed in ms) and median
error in px. R denotes average number of rejected models by Wald’s test; f – number of RANSAC
failures.
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9 Experiments

The RANSAC with adaptive SPRT (A-SPRT) is compared against the ones with no Wald’s
test and with original SPRT setting from [43]. The results are reported in table 9.5 and in
CDFs figure 9.1. According to the table, RANSAC with A-SPRT has the same accuracy as the
one without, however, being only marginally slower than SPRT version. While the latter one
has much more fails, where the solution is considered a failure if its error is higher than 15
pixels. A-SPRT rejects slightly fewer models than SPRT, because it uses the first 21 models for
estimation of the probability (δ̂ from chapter 2) of point being consistent with a bad model. It
suggests that the estimation of δ̂ is important as it reduces false negative rate (rejecting good
models). In this experiment, only image pairs with a ratio of consistent points with GT model
lower than 40% are selected; in total 49 for H and 150 for F, additionally each image pair was
repeatedly run 5 times.
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Figure 9.1 The CDF (cumulative distribution function) plots of processing times (ms) and geometric
accuracy (px) of standard RANSAC with (1) no SPRT, (2) SPRT, and (3) A-SPRT for homography
(figures 1-2) and fundamental matrix (figures 3-4) estimation.

9.4 Calibrated DEGENSAC+

In table 9.6 three RANSAC with different methods for detection and recovery of the funda-
mental matrix are compared. The first one uses the approach proposed in DEGENSAC [16],
the second is the novel DEGENSAC+ with intrinsic matrix approximation, and the last one
uses input calibration. The maximum number of plane-and-parallax RANSAC iterations is set
to 200, and for RANSAC it is 5000. The DEGENSAC needs way more time for detection /
recovery of so-far-the-best fundamental matrix, hence the total time of RANSAC is slower as
well. The DEGENSAC+ with input intrinsics is the fastest since it in constant time can re-
cover F. Moreover, the new DEGENSAC+ is more accurate, suggesting that it returns models
with sufficient non-planar support, while the standard plane-and-parallax RANSAC may fail to
output non-degenerate models.

εavg εmed tavg tmed tDavg

D 0.57 0.41 30.2 29.9 3.24
D+ 0.48 0.34 21.3 23.9 1.07
D+

K 0.39 0.29 19.5 21.5 0.95

εavg εmed tavg tmed tDavg

D 1.28 0.32 33.0 30.7 3.33
D+ 1.19 0.34 22.4 24.0 0.86
D+

K 1.24 0.30 20.5 22.0 0.79

Table 9.6 Comparison of DEGENSAC (D) and DEGENSAC+ (as D+ and D+
K which uses calibration)

on two sets of image pairs (100 each) from PHOTOTOURISM dataset (”Sacre Coeur” on the left and
”St. Peter’s Square” on the right). In columns are εavg, εmed – average and median geometric errors;
tavg, tmed – average and median computational time; and tDavg – average time spent for detection and
recovery of degenerate F. The lowest and second lowest values are highlighted in red and blue,
respectively.

9.4.1 F versus E estimation

One can argue that by knowing calibration, then RANSAC for E estimation could be used
without applying RANSAC for F with the new DEGENSAC+. In table 9.7 are comparison
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9.5 Local optimization

of two RANSAC estimating F and E on the same image pairs (100 in total). The number
of iterations for F-RANSAC is 20000, therefore it assumes an inlier ratio at least 30%. The
corresponding number of iterations for E-RANSAC is 1825 for the same confidence 99%.
Results in 9.7 show that estimating the fundamental matrix is faster despite making almost in
order of magnitude more iterations. The maximum number of solutions of a minimal solver
for E can be up to 10 (even number), while for F it is either 1 or 3, hence it explains that
the difference in the number of tested models is not dramatic. Surprisingly, the output is more
accurate for F (it may be not true in general) with respect to both geometric and pose error.

tmed tavg ε
pose
avg ε

geom
avg Kavg mavg

F 88.8 109.2 4.83 0.47 12744.2 2706.7
E 101.7 118.0 6.39 0.92 1442.5 1574.1

Table 9.7 Comparison of fundamental and essential matrix estimation on the same image pairs of
PHOTOTOURISM dataset. The maximum number of iterations for F is 20000, for E is 1825. In
columns are average and median run-time (tavg, tmed), average pose and geometric errors (εpose

avg , εgeom
avg );

average number of iterations Kavg; and average number of models tested mavg

9.5 Local optimization

Comparison of the VSAC setting (PROSAC + A-SPRT) with three different local optimization
methods is shown in table 9.8. The first one uses Graph-Cut optimization from [4], the second
and third ones have the same new structure proposed in chapter 5, only the second one addi-
tionally applies weights from MAGSAC++ [5] for non-minimal least-squares estimation. All
methods follow the rules described in chapter 5 for applying local optimization, in addition,
they use early termination if a model with the highest support so far is found. If VSAC finishes
without applying local optimization, then it runs it in the end. The number of inner iterations of
LO in this experiment is 20, the number of maximum VSAC iterations is 104, the total number
of tested pairs is 100.

The results show that VSAC enters LO part only once, while so-far-the-best have been up-
dating around 3-4 times. The average and median errors are quite low, suggesting that one LO
run (or 20 least-squares optimizations) is enough to return a good model. All method have
similar accuracy, while GC is the most computationally expensive, although making more op-
timizations than others. The proposed simple local optimization is the fastest, while being only
marginally less accurate than others in H estimation.

εavg εmed tavg tmed tLO
avg Kavg #LO #O #sftb

H

GC 0.86 0.70 7.4 6.7 4.7 17.9 1.0 55.2 4.3
MG 0.83 0.69 4.0 4.0 2.4 18.1 1.0 20.0 4.3
LO+ 0.93 0.69 2.7 2.7 1.2 20.0 1.0 20.2 4.4

F

GC 0.17 0.16 12.0 11.5 6.1 32.9 1.0 60.8 2.6
MG 0.18 0.16 7.3 7.2 2.5 26.9 1.0 20.4 2.6
LO+ 0.17 0.15 6.4 6.3 1.7 28.6 1.0 20.4 2.7

Table 9.8 Comparison of local optimization methods, GC – Graph-Cut, MG – (MAGSAC++) iterative
re-weighted optimization, LO+ – the proposed local optimization. In columns, εavg, εmed – average
and median errors (in px.) over image pairs; tavg, tmed – average and median run-time (in ms); tLO

avg
– average computational time of a method; Kavg – average number of RANSAC iterations; #LO –
average number of entering to local optimization part; #O – average number of optimizations (non-
minimal estimations) inside a method; #sftb – average number of so-far-the-best models in RANSAC.
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9.6 Final Optimization

0 1 2 3 4 5

H

ε 1.120 0.718 0.648 0.627 0.618 0.612
ε′ 1.120 0.718 0.648 0.627 0.617 0.612
t/t′ - 0.751 1.338 1.851 2.298 2.689

F
ε 2.484 2.004 1.921 1.898 1.889 1.885
ε′ 2.484 1.997 1.909 1.886 1.878 1.875
t/t′ - 0.894 1.140 1.263 1.335 1.384

Table 9.9 Final optimization using covariance matrix on homographies (H) and fundamental matrices
(F). Columns (0–5) show the results in the subsequent iterations of iterated LSQ. The average error
(px) of the standard LSQ approach (ε) and the proposed one (ε′), run-time ratio (t/t′ – speed-up)
of the standard fitting to the proposal are reported. Total number of tested final models and aver-
age number of inliers for homography is 13999 and 843; for fundamental matrix are 938 and 361,
respectively.

This section aims to discuss the role of final model polishing on the accuracy of the output
RANSAC model. First, in the experiments shown in table 9.9 was observed that all-inlier least
squares applied several times in a row can significantly improve the accuracy of final model.
Additionally, table 9.9 reports speed-up gained by the new polisher with respect to the ordinary
least-squares optimization.

Second, table 9.10 shows comparison of different final polishing methods in terms of im-
proving a so-far-the-best RANSAC model from a minimal sample. The polishers are as fol-
lows: (1) the standard LSQ, (2) the covariance LSQ, (3) LSQ with MAGSAC++ weights, (4)
the proposed local optimization method (without termination) applied instead of final polisher.
Polishers 1-3 use at most 5 iterations and all-inlier samples, while the LO uses 20 iterations and
sample size is 40 points for F and 21 points for F. For each estimation problem, the covari-
ance polisher is the fastest (except median time for F that means that normalizing all points in
advance had a small overhead). The most accurate polishing method is weighted LSQ (except
the average time for F). Iterative polisher appears to be more accurate on average in F estima-
tion, however, it brings a potential risk of returning a degenerate solution as was discussed in
chapter 5. Therefore, covariance polisher is an ideal choice since it is only slightly less accurate
than weighted polisher, but works several times faster.

εR
avg εavg εmed wε% tavg tmed wt%

H

LSQ

1.67

0.70 0.38 8.0 697.3 590.5 27.0
COV 0.70 0.35 10.0 365.5 345.5 73.0
MGS 0.51 0.32 65.0 1546.0 1519.5 0.0
ITR 0.71 0.39 17.0 1418.0 1396.0 0.0

F

LSQ

2.17

1.31 0.59 16.1 164.1 98.5 35.7
COV 1.23 0.56 23.2 144.0 126.0 64.3
MGS 1.40 0.50 16.1 542.0 481.0 0.0
ITR 0.97 0.58 44.6 1328.4 1344.5 0.0

Table 9.10 Comparison of final polishers, LSQ – the standard all-inlier least squares, COV – fast LSQ
using covariance matrix, MGS – weighted LSQ, ITR – local optimization. In columns, εR

avg – average
error of so-far-the-best RANSAC models of minimal sample; εavg, εmed – average and median errors
on GT points after applying final optimization; tavg, tmed – average and median time of polishing
method. wε

%, w
t
% show percentages of polisher being the most accurate (resp., the fastest) over image

pairs.
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9.7 Quasi pseudo-random sampling

9.7 Quasi pseudo-random sampling

tavg tmed wt% εavg εmed wε% Kavg mavg b SI
H U 4.2 2.0 75.0 0.90 0.66 61.0 834.8 149.5 4.5 2.2

Q 4.2 3.0 25.0 1.00 0.68 39.0 613.4 131.6 6.0 2.9
F U 96.6 118.9 17.0 0.34 0.21 59.0 13686.2 3078.4 4.7 2.1

Q 70.9 84.7 83.0 0.38 0.23 41.0 14354.1 2512.9 4.6 1.5

Table 9.11 Comparison of uniform (U) and quasi-random (Q) sampling over 100 image pairs. In
columns, tavg, tmed – average and median run-time (in ms); εavg, εmed – average and median errors (in
px.); wt

%, w
ε
% – percentages of the lowest runtime (error) pairwise; Kavg – average number of itera-

tions; mavg – average number of tested models; b – average number of so-far-the-best models; SI –
average number points consistent with GT model in minimal sample. The best values are highlighted
in red.

Quasi random sampling was proposed in chapter 5 as local optimization step of minimal sample
size. The table 9.11 shows comparison of RANSAC with uniform sampling, and RANSAC
with applied quasi-random sampling when so-far-the-best model is updated. Unfortunately,
the reported results are quite contradictory and do not allow to make a final decision whether
this optimization is worthful.

For H estimation, the RANSAC with uniform sampling is in 75% of cases faster (100 pairs
tested in total, average ratio of points consistent with GT model is 52% for H and 30% for F).
However, RANSAC with quasi-sampling makes fewer iterations and tested models, it has more
so-far-the-best models, and number of consistent matches with GT model in 4-point sample is
higher.

The results for F estimation shows almost the opposite. RANSAC with quasi-sampling
optimization is in 83% cases faster, however number of iterations is higher, and number of
points consistent with GT in sample is lower. The number of tested models has remained fewer
as well.

9.8 Epipolar geometry solver

This section discusses the results regarding the proposed non-minimal solvers for essential
matrix in section 4.2.1. Additionally, it addresses the issue with enforcing singular values to
satisfy rank constraint (F) and, also, to force the first two of them to be equal (E). The problem
stems from correcting the singular values, which makes the estimate worse.

9.8.1 Non-minimal optimization

In table 9.12 is comparison of presented in section 4.2.1 non-minimal solvers: (1) estimating
non-minimal F via 8-point algorithm and its conversion to E via calibration, (2) estimating
directly E from normalized points by intrinsics, (3-4) partial optimization of E via translation
(resp. rotation) component. The table shows that the first two methods are best for both geomet-
ric and pose accuracy if the singular values of epipolar geometry are not corrected. However, in
case a precise E is required then the best option considering time and geometric error is the one
with partial optimization of the translation vector. An optimized essential matrix via rotation
part is more often accepted by RANSAC as it has the lowest geometric error.

45



9 Experiments

avg. geom. avg. poseE
εR εO εF εR εO εF

tavg navg

Ph
ot

oT
ou

ri
sm

A1

0.292

1.319 0.257

2.24

2.22 2.20 97.0 1.0
A1′ 0.209 0.209 2.22 2.22 83.3 1.0
A2 1.371 0.221 2.59 2.22 74.4 1.0
A2′ 0.212 0.207 2.59 2.27 70.4 1.0
A3 0.343 0.221 2.43 2.26 71.0 2.0
A4 0.384 0.219 3.13 2.26 995.8 3.6

Table 9.12 Comparison of non-minimal solvers (A1-A4) for essential matrix (E), where A1 – 8-point
algorithm for F followed by applying calibration to obtain E, A2 – 8-point method on normalized
(”calibrted”) points, A3, A4 – partial optimization of translation (resp. rotation) part of E; in A1′ and
A2′ methods correction of singular values is relaxed (rows are highlighted in pink, and they are not
included in comparison). In columns are average geometric and pose errors: εR – error of RANSAC
model of minimal sample, εO – error of optimized model, εF – error of final accepted model; tavg (in
ms) shows average run-time of solver; navg – average number of solutions of solver.

9.8.2 Correction of singular values

PhotoTour εavg εmed wε% tavg tmed wt% Kavg

E RSC 2.21 0.38 60.0 154.4 160.7 3.0 1772.5
RSC′ 2.40 0.45 40.0 115.6 86.2 97.0 1595.7

F RSC 0.16 0.13 54.5 25.4 25.5 16.0 1895.8
RSC′ 0.17 0.14 45.5 22.1 22.8 84.0 1905.9

Table 9.13 Comparison of two RANSAC (RSC, RSC′) with local optimization for F and E matrix
estimation on PHOTOTOURISM dataset. In RSC after non-minimal optimization an epipolar geometry
is subject to correction of singular values in order to satisfy its properties, while in RSC′ this constraint
is relaxed. In columns are shown average and median errors (εavg, εmed; in px for F, in degrees for E),
average and median time (tavg, tmed in ms), percentages of pairwise better results w.r.t. time (wt

%) and
error (wε

%); the average number of RANSAC iterations – Kavg.

Table 9.13 reports a comparison of two RANSAC with local optimization, where the first has
the correction of singular values, while for the second one this constraint is relaxed. The exper-
iment is done for both F and E on 100 pairs of PHOTOTOURISM dataset.

As was mentioned in section 4.2.1, if E is evaluated on pose error then there is no need for
singular value correction. The result for E in table 9.13 shows that RANSAC with the proposed
approach is in 97% runs faster, and its median is almost twice less. In spite of the pose errors
are just slightly higher, the gained speed-up is worthwhile.

For F in the experiment from table 9.13, zeroing of the last singular value has remained but
only in the final optimization, hence RANSAC always return 2-rank matrix (if FO fails, the
so-far-the-best of minimal sample is accepted). The idea is again to speed-up the total run-time
by avoiding SVD of F every time after non-minimal estimation in the LO part, and to generate
models that better fit data points. The table reports that this approach makes RANSAC in 84%
of cases faster with negligible loss of accuracy.

9.8.3 Outlier removal

In table 9.14 are compared least-squares optimization of so-far-the-best fundamental matrix
with and without discarding incorrect matches consistent with F. The results show that with
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removing outliers, the geometric error of the final optimization decreases by around 0.01-0.02
pixels, which is reasonable considering the number of mismatched correspondences consistent
with the found epipolar geometry is low. However, the time for estimation has raised about
30% for filtering points.

εR
avg εavg εmed wε% tavg tmed wt%

LSQ
0.459

0.292 0.183 44.5 311.7 304.5 86.0
LSQ∗ 0.274 0.173 55.5 413.3 412.0 14.0

Table 9.14 Comparison of LSQ methods, where LSQ∗ additionally removes incorrect matches consis-
tent with so-far-the-best F. In columns, εR

avg – average error of so-far-the-best RANSAC models of
minimal sample; εavg, εmed – average and median errors (px) on GT points after applying final opti-
mization; tavg, tmed – average and median time (ms). wε

%, w
t
% – percentages of more accurate / faster

output over 100 image pairs of PHOTOTOURISM dataset.

9.9 Parallel RANSAC
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Figure 9.2 The plot shows a speed-up of parallel RANSAC to the standard one. Both were running
with the fixed number of iterations (from 1000 to 200000 with step 5000, see x-axis) on two Linux
machines with 12 cores (yellow lines) and 4 cores (green lines). Red crosses denote fundamental
matrix and blue dots – homography estimation.

The figure 9.2 shows a theoretical speed-up proportional to a number of cores of machine
for both F and H estimation. The RANSAC in experiment has the fixed number of iterations
without earlier termination. It is done on purpose for two reasons: 1) see speed-up as a function
of iteration number; 2) avoid randomization of results, since the parallel version does not output
the same output as the sequential one. From the plot 9.2 can be observed that for a low number
of iterations, the speed-up is less than predicted. The reason for this is the overhead caused by
thread creation, which overcomes the time needed for the standard RANSAC. For the higher
number of iterations, the speed-up remains constant. Graphs for 12-core machine1 look very
noisy, it could have been caused by running the experiment on a server that is also available for
other users. Therefore, during computation, some threads may have been distracted by other
tasks. While, the results of 4-core machine are generated on a local computer2.

1Debian, 2 sockets, 6 cores per socket, 2 threads per core, Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
2Ubuntu, 1 socket, 4 cores per socket, 2 threads per core, Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz
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εavg εmed tavg tmed Kavg E(t/t′)

F

RSC 0.25 0.21 88.4 54.8 27874.0
2.70

RSC′ 0.24 0.18 26.5 15.9 23039.0
PSC 0.79 0.20 68.5 23.6 10059.0

2.53
PSC′ 0.20 0.18 21.1 11.9 8506.5

H
RSC 1.29 0.84 1.9 1.0 397.0

1.06
RSC′ 1.09 0.84 1.5 1.2 594.5
PSC 1.33 0.84 2.3 1.3 329.0

1.03
PSC′ 1.23 0.85 1.9 1.6 674.0

Table 9.15 Comparison of RANSAC (RSC) and PROSAC (PSC) against their parallel versions RSC′
and PSC′ respectively over a range of image pairs. In columns, εavg, εmed – average and median errors
(int px.); tavg, tmed – average and median time (in ms); Kavg – average number of iterations; E(t/t′) –
average speed-up of parallel method pairwise.

The table 9.15 reports the speed-up of parallel VSAC with uniform (RANSAC) and PROSAC
sampling in real-case scenarios. All runs were done on the 4-core machine. Image pairs with a
ratio of consistent points with GT model higher than 60% for F and 50% for H were excluded
as the cases when parallel implementation is slower due to its overhead, in total 100 pairs for F
and 62 pairs for H were tested. The results suggest that parallel implementation is significantly
faster for low inlier-ratio problems, where RANSAC has to draw more samples. For instance,
in F estimation, methods make tens of thousands of iterations, therefore the speed-up is more
visible than for H estimation, in which just hundreds of tested hypotheses. The parallel versions
seem marginally more accurate.

9.10 VSAC versus competitors

The proposed VSAC setting incorporating the proposed A-SPRT, calibrated DEGENSAC+,
fast LO+, PROSAC, and final covariance-based polishing, and its more accurate version (VSACMGS)
with iterative re-weighted least squares polishing of weights from [5] are compared with the
following state-of-the-art robust estimators for homography and fundamental matrix estima-
tion:

1. USACv20 – framework from [32] with SPRT, GC-RANSAC, DEGENSAC, and Progressive
NAPSAC.

2. Default OpenCV RANSAC implementation.
3. USAC framework from [51] with SPRT, LO-RANSAC, DEGENSAC, and PROSAC.
4. GC-RANSAC from [4] with SPRT, PROSAC, and DEGENSAC.
5. MAGSAC++ from [5] with PROSAC and DEGENSAC.
6. ORSA – RANSAC with a contrario approach [19].

The code of the methods listed above are taken either from GitHub or authors’ webpages;
all of them are implemented in C++. The methods were run on the same computer (Intel(R)
Xeon(R) CPU E5-2630 v2 @ 2.60GHz), and they were compiled into a single C++ executable,
with all optimization switches on.

9.10.1 Homography

The table 9.16 reports comparison results of the proposed VSAC setting for homography ma-
trix estimation The maximum number of iterations is 3000. The proposed VSAC has the low-
est average, median, and the maximum time, while having a similar accuracy as Graph-Cut
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9.10 VSAC versus competitors

or MAGSAC++ implementations. Additionally, the slightly slower VSACMGS version with
weighted LSQ polisher has the top accuracy on some datasets. The CDFs graphs in figure 9.3
show that VSACMGS has the highest probability of reaching accurate solutions than others.
Similarly, the run-time CDFs report that VSAC finishes much earlier, e.g., more than 40% of
cases are solved within just a few milliseconds.

Time (milliseconds) Error (pixels)H Method
tmed tavg tmax wt% εmed εavg εmax wε%

E
V

D
(1

0
pa

ir
s)

VSAC 1 0.6 1 1.0 1 4.1 1 100 1 2.64 3.16 2 6.34 1 28
VSACMGS 2 0.9 2 1.3 2 4.3 0 2 2.67 1 3.02 7.18 13
USACv20 2.6 5.3 24.6 0 2.99 3.34 8.17 16
USAC 12.6 15.9 58.1 0 8.12 176.19 474.08 2
OpenCV 19.7 22.4 62.7 0 3.51 4.06 7.11 1
GC 10.2 17.6 64.7 0 2.77 2 3.14 7.51 2 21
MGSC++ 31.6 29.4 91.4 0 3.44 3.34 1 4.81 16
ORSA 66.8 86.7 267.2 0 148.50 174.25 438.44 3
Cross-validation error on the ground truth points: 1.75 1.80 2.29

H
Pa

tc
he

s
(1

00
pa

ir
s)

VSAC 1 2.2 1 2.3 1 4.7 1 57 0.70 0.93 7.34 8
VSACMGS 4.7 2 5.0 2 9.1 0 2 0.69 1 0.78 1 2.12 11
USACv20 7.4 7.9 21.8 0 0.70 0.86 2.93 7
USAC 51.8 60.4 177.5 0 0.75 1.23 8.15 1 17
OpenCV 2 2.9 11.2 76.2 2 43 0.72 0.94 2.70 1 17
GC 37.7 41.2 102.2 0 1 0.68 1 0.78 2 2.18 2 16
MGSC++ 28.7 60.3 907.8 0 0.73 2 0.82 2.29 10
ORSA 676.5 1149.8 6197.5 0 0.82 223.20 177.80 14
Cross-validation error on the ground truth points: 0.65 0.65 1.15

H
om

og
r

(1
0

pa
ir

s)

VSAC 1 0.6 1 0.9 1 4.0 1 79 1.14 1.28 2.74 2 18
VSACMGS 2 1.0 2 1.6 7.3 0 1 0.95 1 1.18 1 1.83 7
USACv20 1.4 1.9 2 6.2 0 1.18 1.26 2.33 2 18
USAC 8.1 17.3 75.8 0 1.38 6.64 430.65 11
OpenCV 2.4 4.0 12.5 2 21 1.39 1.63 4.54 11
GC 9.4 11.9 35.9 0 1.08 2 1.20 2 2.12 0
MGSC++ 5.8 10.3 58.3 0 2 0.98 1.40 6.24 1 20
ORSA 77.5 387.7 1761.2 0 1.26 2.11 20.04 16
Cross-validation error on the ground truth points: 0.71 0.79 1.23

Table 9.16 Comparison of speed and accuracy of the RANSAC methods. Average tavg, median tmed,
and the maximum tmax running time (ms) over all runs on HPATCHES, EVD, and HOMOGR datasets
(for homography matrix estimation), including 10 repetitions for two latter ones. Similarly, the table
reports average εavg, median εmed and the maximum εmax error (px) of ground truth points. To account
the randomization, the percentage of top results is given in the wt

%, wε
% columns. The errors of the

top methods are close to the accuracy of ground truth points (cross-validation error), estimated using
leave-one-out.

a
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Figure 9.3 CDF plots of geometric accuracy (left figure) and run-time (right figure) of the proposed
framework and its competitors for homography matrix estimation on HPATCHES dataset.

9.10.2 Fundamental matrix

Time (milliseconds) Error (pixels)F Method
tmed tavg tmax wt% εmed εavg εmax wε%

K
us

vo
d

(1
5

pa
ir

s)

VSAC 1 3.4 1 5.9 1 22.4 1 40 0.53 2 0.71 1 2.07 3
VSACMGS 4.4 7.0 23.1 0 1 0.43 1 0.67 1 2.07 1 23
USACv20 2 4.2 12.8 51.6 2 27 0.55 2.86 28.56 13
USAC 2 4.2 2 6.0 2 22.9 20 0.54 4.56 51.58 13
OpenCV 18.8 58.6 170.3 7 0.93 4.52 38.11 0
GC 26.9 50.8 173.2 0 0.57 0.96 2 4.33 2 20
MGSC++ 53.1 110.3 309.9 0 2 0.46 4.39 56.39 2 20
ORSA 38.6 80.7 634.5 7 0.50 10.77 111.25 7
Cross-validation error on the ground truth points: 0.91 1.12 2.34

Ph
ot

oT
ou

ri
sm

(1
00

pa
ir

s) VSAC 1 6.2 1 6.2 1 11.5 1 91 2 0.16 1 0.16 0.78 1 22
VSACMGS 2 7.7 2 7.8 2 14.7 0 1 0.15 2 0.17 0.80 10
USACv20 46.6 56.1 123.4 1 0.17 0.21 1.08 9
USAC 12.0 12.8 42.6 2 8 0.17 0.33 12.07 9
OpenCV 229.8 203.0 349.9 0 0.35 0.63 7.47 0
GC 243.3 209.5 350.2 0 0.19 0.20 1 0.47 12
MGSC++ 293.8 316.2 1270.4 0 2 0.16 0.18 1.24 2 16
ORSA 108.1 129.7 448.2 0 1 0.15 2 0.17 2 0.50 1 22
Cross-validation error on the ground truth points: 0.06 0.07 0.11

St
re

ch
aM

V
S

(1
00

pa
ir

s) VSAC 1 4.2 1 5.2 2 30.9 1 40 1 0.21 1 0.31 2 1.99 13
VSACMGS 5.7 2 6.5 31.6 0 1 0.21 1 0.31 1 1.84 11
USACv20 2 5.4 18.7 113.1 6 2 0.22 0.42 3.29 2 16
USAC 6.4 7.9 1 22.8 2 27 2 0.22 0.66 21.28 12
OpenCV 20.8 60.6 197.2 2 27 0.50 0.83 6.21 7
GC 30.6 57.4 216.3 0 2 0.22 2 0.33 2.68 1 18
MGSC++ 86.9 257.2 3442.7 0 1 0.21 0.36 5.99 15
ORSA 74.5 168.4 923.7 0 1 0.21 23.15 599.78 8
Cross-validation error on the ground truth points: 0.20 0.38 7.09

Table 9.17 Geometric accuracy (px) and run-time (px) comparison of RANSAC methods for funda-
mental matrix estimation on KUSVOD, PHOTOTOURISM, and STRECHAMVS datasets.
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Figure 9.4 CDF plots of geometric accuracy (left figure) and run-time (right figure) of the proposed
framework and its competitors for fundamental matrix estimation on PHOTOTOURISM dataset.

In table 9.17 are compared robust estimators with the maximum number of iterations equal to
5000. Similarly to H estimation, VSAC shows top run-time performance, while VSACMGS is
one of the most accurate. The CDFs plots in figure 9.4 agree with the table’s results.

9.10.3 Essential matrix

For a five-point essential matrix estimation (the maximum number of iterations is 1000), USAC
and ORSA estimators are excluded from the comparison as they do not contain E solver. The
results are reported in table 9.18. VSAC and VSACMGS seem to be less accurate, which can be
also observed from CDFs of errors in figure 9.5. However, the reported pose error is in degrees,
hence the difference is not dramatic. Moreover, the proposed estimator is tens of times faster
as can be seen from CDF of run-time in figure 9.5, e.g., it finds a solution within 10 ms with
probability 60%. This can compensate the slight loss of accuracy.

Time (milliseconds) Error (degrees)E Method
tmed tavg tmax wt% εmed εavg εmax wε%

Ph
ot

oT
ou

ri
sm

VSAC 1 7.7 1 12.7 1 95.1 1 97 2 0.45 1.96 1 24.20 13
VSACMGS 2 9.2 2 14.0 2 96.0 0 0.47 2.01 2 26.35 12
USACv20 78.0 71.7 114.3 2 3 0.47 2.26 42.70 15
OpenCV 368.5 300.9 437.5 0 1.18 4.84 43.93 6
GC 118.9 115.8 185.7 0 0.53 2 1.83 30.23 2 23
MGSC++ 125.6 126.4 199.2 0 1 0.37 1 1.40 47.17 1 31

St
re

ch
aM

V
S

VSAC 1 4.9 1 13.4 84.6 1 87 0.40 0.94 7.15 9
VSACMGS 2 6.3 2 14.6 85.1 0 0.37 0.89 2 6.10 11
USACv20 18.8 29.9 1 83.7 1 1 0.24 0.99 34.84 1 34
OpenCV 28.3 100.6 366.8 2 6 0.39 2 0.58 1 3.17 14
GC 24.0 30.3 2 84.5 2 6 0.50 1.57 16.92 14
MGSC++ 16.5 42.4 284.4 0 2 0.34 1 0.51 6.36 2 18

Table 9.18 Pose error (in degrees) and run-time (ms) comparison of RANSAC methods for essential
matrix estimation on PHOTOTOURISM, and STRECHAMVS datasets (100 tested pairs each).
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Figure 9.5 CDF plots of pose errors (left figure) and run-time (right figure) of the proposed framework
and its competitors for essential matrix estimation on PHOTOTOURISM dataset.

9.10.4 Perspective-n-Point

Table 9.19 reports comparison of PnP estimators. In this experiment, VSACMGS is excluded
since it is no longer a two-image problem. The VSAC uses the classical P3P solver described
in [50] and directed least-squares (DLS) method from [30] for a non-minimal optimization.
The competitors are the following OpenCV implementations:

1. EPnP – Efficient Perspective-n-Point Camera Pose Estimation [37].
2. P3P – Complete Solution Classification for the Perspective-Three-Point Problem [22].
3. AP3P – An Efficient Algebraic Solution to the Perspective-Three-Point Problem [35].

The results from table 9.19 and CDFs in figure 9.6 show that the presented estimator is less
accurate (on average and median) for around 3 degrees in T-LESS, around 1 degree in LM-O,
and around 1-2 degrees in YCB-V than the most accurate EPnP estimator. Although, VSAC is
again the fastest implementation, and it is up to several times faster than the most accurate one.
The maximum iteration number in this experiment is 5000.

Time (milliseconds) Error (degrees)

Pn
P

Method
tmed tavg tmax wt% εmed εavg εmax wε%

T-
L

E
SS

VSAC 1 12.1 1 15.5 1 44.5 1 85 4.03 17.97 90.20 13
EPnP 242.9 392.2 1602.9 0 1 1.55 1 13.26 90.04 1 41
P3P 2 62.2 2 124.2 686.0 7 1.86 2 14.56 1 89.90 2 24
AP3P 63.0 124.5 2 668.7 2 8 2 1.82 15.28 2 90.00 23

L
M

-O

VSAC 1 10.0 1 12.3 1 74.9 1 65 4.99 6.46 29.69 2 22
EPnP 71.3 142.4 631.8 0 1 4.14 2 5.47 1 25.05 1 42
P3P 19.2 2 37.6 2 310.1 2 22 2 4.19 1 5.44 26.17 18
AP3P 2 18.9 40.7 310.8 13 4.33 5.69 2 26.10 18

Y
C

B
-V

VSAC 1 10.9 1 11.5 1 26.5 1 70 1.98 3.58 27.40 2 24
EPnP 45.1 100.5 875.1 2 1.67 1 1.74 1 4.86 1 41
P3P 2 17.8 44.1 634.5 2 21 1 1.53 1.95 2 22.77 18
AP3P 18.6 2 42.6 2 583.0 7 2 1.57 2 1.94 2 22.77 18

Table 9.19 Pose error (in degrees) and run-time (ms) comparison of RANSAC methods for perspective
projection matrix estimation on T-LESS, LM-O, and YCB-V datasets (100 runs each).
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Figure 9.6 CDF plots of geometric accuracy (left figure) and run-time (right figure) of the proposed
framework and its competitors for perspective projection estimation on LM-O dataset.

9.11 Correction of points

H Method GT εmed εavg εmax

H
Pa

tc
he

s

VSACMGS
Input 0.69 0.78 2.12
Corr. 0.43 0.57 2.08

X-val Input 0.57 0.58 0.80
Corr. 0.00 0.00 0.00

E
V

D VSACMGS
Input 2.67 3.02 7.20
Corr. 2.14 2.69 7.60

X-val Input 1.75 1.80 2.29
Corr. 0.00 0.00 0.00

F Method GT εmed εavg εmax
K

us
vo

d VSACMGS
Input 0.43 0.68 2.07
Corr. 0.42 0.65 2.07

X-val Input 0.91 1.12 2.34
Corr. 0.00 0.00 0.00

M
V

S VSACMGS
Input 0.21 0.31 1.84
Corr. 0.19 0.28 1.77

X-val Input 0.20 0.38 7.09
Corr. 0.00 0.00 0.00

Figure 9.7 The median (εmed), average (εavg) and maximum (εmax) errors in pixels on the used datasets
when using the input ground truth correspondences and the corrected (Corr.) ones projected to the
model manifold as reference inliers. X-val rows shows cross-validation error estimated using leave-
one-out. The lowest errors are highlighted in red.

Table 9.7 demonstrates how correcting the ground truth point correspondences (proposed in
section 7.2) affects the results of the accurate version VSACMGS. The corrected GT points
have zero geometric error with respect to GT model, therefore as expected the cross-validation
errors have become zero.

In all cases, using the ground truth corrected by being projected to the model manifold, it
reduces the median and average errors of VSACMGS method, allowing a more accurate com-
parison. For εmax, the error is dominated by inaccuracies of the estimated model and the
relatively small change between provided and corrected GT points randomly changes the error
in either direction, either + or -, by a small amount. For H estimation, the errors εavg, εmed
dropped by about 0.2-0.3 pixels, which is a reasonable value for the positional noise of GT
points. For PHOTOTOURISM and STRECHAMVS, the GT points were selected from image
correspondences perfectly fitting a model estimated from hundreds of points; their correction
is minimal.
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10 Conclusions

This thesis presents framework VSAC for robust estimation of homography, epipolar geometry,
and perspective projection matrix. In experiments, VSAC is the fastest on average and median
run-time, yet it is providing the similar accuracy as state-of-the-art estimators on benchmark
datasets EVD, HPatches, PhotoTourism, StrechaMVS, and Kusvod2 for two-view geometry
estimation. This is achieved by introducing a number of improvements.

The VSAC is able to recognize a random final model structure, i.e., a failure. By using
the concept of independent and dependent inliers, it is shown that support of random models
follows a Poisson distribution with a single parameter that is easy to estimate. The method
distinguishes image pairs without common field of view with close to zero false positive rate,
while for image pairs from datasets the procedure has a zero false negative rate (rejection of a
good model).

The efficacy is reached by employing fast minimal solver and light local optimization inside
RANSAC loop. Exploiting Gaussian elimination in finding a matrix null-space instead of SVD
brings significant speed-up for a minimal model estimation without noticeable deterioration of
precision. By applying additional rules for LO+ execution, it yields to its total number of runs
close to 1 during the whole VSAC, in spite of a higher number of so-far-the-best models found.
Similarly, earlier termination of LO+ method saves the total run-time. The accurate model
parameter is estimated in the final optimization, in which the proposed technical enhancements
enable to accelerate iterative LSQ method.

Degenerate configurations of epipolar geometry are addressed in the new DEGENSAC+

algorithm. The detection of random models helps to avoid failure of the method, i.e., outputting
degenerate model. Moreover, by incorporating intrinsic matrices, DEGENSAC+ can recover
the fundamental matrix in a fully planar scene in a constant time, or to detect pure rotation.
If calibration is not known, the method approximates it to find a non-degenerate fundamental
matrix, while still being faster than two-point plane-and-parallax RANSAC.

Adaptive input parameter estimation for A-SPRT tunes the method and reduces a number of
false negatives, i.e., rejection of a good model. Consequently, the method becomes as accurate
as if no pre-emptive verification is used. Whereas, the gained speed-up of the whole VSAC
run-time is significant.

The framework can provide a new output by correcting inliers to have zero error with respect
to the final model estimate. This removes a noise from the point set, and could be helpful for
further applications of inliers. In addition, some incorrect matches by chance consistent with
so-far-the-best epipolar geometry are discarded.

The proposed robust estimator can be run in parallel, where a speed-up is proportional to
a number of cores. The VSAC includes a quasi-random sampling which is likely to draw
all-inlier samples, while keeping a uniform pseudo-random point selection. Another minor
improvement is gained by the relaxation of singular value constraints for epipolar geometry
when it is applicable. In addition, a few suggestions for essential matrix and linear P6P solvers
are introduced.

Contributions of this thesis are presented in VSAC paper [33] accepted at ICCV 2021. Ad-
ditionally, an earlier version of the framework is integrated into OpenCV library.
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11 Appendix

11.1 Independent inliers

Let a correspondence x ↔ x′ satisfies epipolar constraint x′>Fx = 0. If any correspondence
y ↔ y′ lies on epipolar lines F>x′ and Fx (respectively) then it satisfies epipolar constraint
too.
Proof: Assume x′>Fx = y′>Fx = x′>Fy = 0 and the goal is to show that y′>Fy = 0.
Epipolar line Fx must cross epipole e′ and point x′. From x′>Fy = 0 it can be also seen that
Fy is an epipolar line which goes through epipole e′ and x′. Therefore, lines Fy = λFx, λ 6= 0
are up-to-scale. Finally, y′>Fy = y′>(λFx) = 0 from the assumption.

11.2 Closest quadruple on the homography manifold

This section shows that a corrected correspondence (x̃, x̃′) has zero error with respect to ho-
mography H = AA. The middle point m presented in section 7.2.1 defines the corrected
points as follows:

x̃ ∼ A−1m and x̃′ ∼ Am (11.1)

Where∼ denotes up-to-scale operator. By eliminating m from the two equations, the following
relation holds:

Ax̃ ∼ A−1x̃′ =⇒ AAx̃ ∼ x̃′ (11.2)

Therefore, point x̃′ is equal up-to-scale to point Hx̃, and point x̃ is equal up-to-scale to H−1x̃′.
By removing scale using φ mapping which normalizes homogeneous point by z-coordinate,
the symmetric reprojection distance of corrected correspondence to H is indeed zero:

||x̃′ − φ(Hx̃)||+ ||x̃− φ(H−1x̃′)|| = 0 (11.3)
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12 CD content

/
thesis......................................................LATEX source code
vsac.........................................................VSAC framework

src........................................................Source code files
experiments..........................................Files for experiments
test........................................................Files for testing
samples........................................................Demo files
include.......................................Third party code and libraries
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